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Abstract. Let K′ be a knot that admits no cosmetic crossing changes

and let C be a prime, non-cable knot. Then any knot that is a satellite of

C with winding number zero and pattern K′ admits no cosmetic crossing

changes. As a consequence we prove the nugatory crossing conjecture

for Whitehead doubles of prime, non-cable knots.
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1. Introduction

A crossing disk for an oriented knot K ⊂ S3 is an embedded disk D ⊂ S3

such that K intersects int(D) twice with zero algebraic intersection number.
A crossing change on K can be achieved by performing (±1)-Dehn surgery
of S3 along the crossing circle L = ∂D. More broadly, a generalized crossing
change of order q ∈ Z − {0} is achieved by (−1/q)-Dehn surgery along the
crossing circle L and results in introducing q full twists to K at the crossing
disk D bounded by L. See Figure 1. A (generalized) crossing change of K
and its corresponding crossing circle L are called nugatory if L bounds an
embedded disk in S3−η(K), where η(K) denotes a regular neighborhood of
K in S3. Obviously, a generalized crossing change of any order at a nugatory
crossing of K yields a knot isotopic to K.

Definition 1.1. A (generalized) crossing change on K and its corresponding
crossing circle are called cosmetic if the crossing change yields a knot isotopic
to K and is performed at a crossing of K which is not nugatory.

It is a fundamental open question whether there exist knots that admit
cosmetic crossing changes [1, Problem 1.58]. This question, often referred to
as the nugatory crossing conjecture, has been answered in the negative for
many classes of knots. It follows from work of Scharlemann and Thompson
[12], based on techniques of Gabai [4], that the unknot admits no cosmetic
generalized crossing changes. Torisu showed that 2-bridge knots admit no
cosmetic generalized crossing changes [13], and Kalfagianni showed that the
same is true for fibered knots [7]. Obstructions to cosmetic crossing changes
in genus-one knots were found by the authors with Friedl and Powell in
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Figure 1. Left: A generalized crossing change of order 2.
Right: Examples of nugatory crossing circles.

[3], where it is shown that genus-one, algebraically non-slice knots admit no
cosmetic generalized crossing changes. The objective of the current paper
is to study the behavior of potential cosmetic crossing changes under the
operation of forming satellites with winding number zero.

To state our results, let K denote the class of knots which do not admit
cosmetic generalized crossing changes. By the previous paragraph, K con-
tains all fibered knots, 2-bridge knots and genus-one, algebraically non-slice
knots. Torisu shows in [13] that the connect sum of two or more knots in K
is also in K.

Definition 1.2. We will say a torus T is standardly embedded in S3 if T
bounds a solid torus on both sides.

A knot K embedded in a solid torus V , is called geometrically essential if
the geometric intersection of K with every meridian disc of V is non-trivial.

For a knot K embedded in a solid torus V , the winding number, w(K,V ),
is the algebraic intersection number of K with a meridian disk of V .

In [2], Balm showed that any prime satellite knot with pattern a non-
satellite knot in K does not admit cosmetic generalized crossing changes of
order greater than five. Here we restrict ourselves to satellites with winding
number zero, and we obtain the following stronger result.

Theorem 1.3. Let C be a non-trivial, prime, non-cable knot and let V ′

be a standardly embedded solid torus in S3. Let K ′ ∈ K and suppose that
K ′ is embedded in V ′ so that it is geometrically essential and such that
w(K ′, V ′) = 0. Then any knot K that is a satellite of C with pattern (V ′,K ′)
admits no cosmetic generalized crossing changes of any order. That is K
satisfies the nugatory crossing conjecture.

Theorem 1.3 has the following corollary.

Corollary 1.4. Let K be a prime, non-cable knot. Then no Whitehead
double of K admits a cosmetic generalized crossing change of any order.

To outline the main ingredients of the proof of Theorem 1.3, let K be
a satellite knot that has zero winding number in a companion solid torus
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V with pattern K ′ ∈ K. First we use results of Gabai [4] to prove that a
cosmetic crossing disk D of K can be isotoped to lie inside V . Using this and
properties of toroidal decompositions of knot complements, we argue that
an order-q cosmetic crossing disk D of K gives an order-q crossing change
of K ′, that yields a knot isotopic to K ′. Then, using a result of McCullough
[10], we show that the fact that D is a cosmetic crossing disk for K implies
that D is also cosmetic for K ′. This, in turn, contradicts the assumption
that K ′ ∈ K and proves Theorem 1.3.

The paper is organized as follows: In section two we study the interplay
between cosmetic crossing disks and companion tori with zero winding num-
ber, and we prove the auxiliary results needed for the proof of Theorem 1.3.
In section three we prove Theorem 1.3 and Corollary 1.4.

2. Crossing circles, companion tori and isotopies

We begin by recalling some definitions.

Definition 2.1. Let V ′ be a standardly embedded solid torus in S3, and
let K ′ be a knot embedded in V ′ so that K ′ is geometrically essential in V ′

and not the core of V ′. A solid torus V ⊂ S3 is knotted if the core of V is
not isotopic to the unknot in S3.

Let f : (V ′,K ′) → S3 be an embedding such that the solid torus V =
f(V ′) is knotted. A satellite knot with pattern K ′ is the image K = f(K ′).
If C is the core of V , then C is a companion knot of K, and we may call
K a satellite of C. The torus T = ∂V is a companion torus of K. We may
similarly define a satellite link if K ′ is a non-split link.

A cable knot is a torus knot or a satellite knot with pattern a torus knot.

Given a 3-manifold N and a submanifold F ⊂ N of co-dimension 1 or
2, η(F ) will denote a regular neighborhood of F in N . For a knot or link

K ⊂ S3, we define MK = S3 − η(K).
Given a knot K, let K(q) denote the knot obtained via an order-q gener-

alized crossing change at a crossing circle L. We will also use the notation
K(0) when we wish to be clear that we are referring to the embedding of K

in S3 before any crossing change occurs. Setting MK∪L = S3 − η(K ∪ L),
we will let M(q) denote the 3-manifold obtained from MK∪L via a Dehn
filling of slope (−1/q) along ∂η(L). So for q ∈ Z− {0}, M(q) = MK(q) and
M(0) = MK .

The first lemma which we will need in the proof of the results stated in
the introduction is the following.

Lemma 2.2. Let K be a satellite knot, T be a companion torus for K, and
V be the solid torus bounded by T in S3. Suppose that w(K,V ) = 0 and that

there are no essential annuli in S3 − V . If D is a cosmetic crossing disk for
K we can isotope it so that it lies in V .
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Proof. Let K be as in the statement of the lemma, and suppose that D is an
order-q cosmetic crossing disk with L = ∂D. Since lk(K,L) = 0, K bounds

s Seifert surface in the S3 − η(L). Let S be a minimal genus Seifert surface

for K in S3 − η(L). The intersection S ∩ D consists of a single embedded
arc α and a collection of simple closed curves. Simple closed curves that
are parallel to ∂D can be eliminated by sliding S off the boundary of D,
while simple closed curves that bound disks in D − α can be eliminated by
isotopy of S in S3 − η(L). Hence we may choose S so that S ∩D is a single
embedded arc α. Then performing (−1/q)-surgery at L twists both K and
S and produces a surface S(q) ⊂M(q) which is a Seifert surface for K(q).

Note that if MK∪L were reducible, then MK∪L would contain a separating
2-sphere which does not bound a 3-ball B ⊂ MK∪L. Then L would lie in
a 3-ball disjoint from K. Hence L would bound a disk in this 3-ball, which
is in the complement of K, so L would be nugatory. Since L is cosmetic
by assumption, we may conclude that MK∪L is, in fact, irreducible. By a
result of Gabai [4, Corollary 2.4] at least one of S, S(q) is of minimal genus
for K, K(q), respectively, in S3. However, K and K(q) are isotopic, and
the genus of S is equal to that of S(q). Thus both S and S(q) are minimal
genus surfaces for their respective knots.

We may isotope D to lie in a neighborhood of S so that if S ⊂ V , then we
may arrange that D ⊂ V . Assume that S 6⊂ V , and let C = S ∩ T . We may
isotope S so that C is a collection of simple closed curves which are essential
in both S and T . Since w(K,V ) = 0, C must be homologically trivial in T ,
where each component of C is given the boundary orientation from S ∩ V .
Hence C bounds a collection of annuli in T which we will denote by A0.

Let S0 = S − (S ∩ V ). Suppose that χ(S0) < 0, where χ(·) denotes
the Euler characteristic. We may create S∗ from S by replacing S0 by A0,
isotoped slightly, if necessary, so that the components of A0 become disjoint.
Then S∗ is a Seifert surface for K, and χ(S∗) > χ(S) since χ(A0) = 0. This
contradicts the fact that S is a minimal genus Seifert surface for K, so it
must be that χ(S0) ≥ 0. Since S0 contains no closed component, and no
component of C bounds a disk in S, we conclude that S0 consists of annuli.

By assumption, there are no essential annuli in S3 − V , so each component
of S0 must be boundary parallel in S3 − V . Thus we can isotope S0 so that
S ⊂ V , and therefore D can be isotoped into V as well. �

The hypotheses in the statement of Lemma 2.2 assure that a cosmetic
crossing disk can be isotoped to lie inside a companion torus. In particular,
such a crossing disk is disjoint from the corresponding companion torus. In
the next three lemmas we deal with cosmetic crossing circles that are disjoint
from companion tori. The first two lemmas examine how companion tori of
a knot K, that are disjoint from a crossing circle L, behave under crossing
changes along L that don’t change the isotopy class of K.
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Lemma 2.3. Suppose that L is a nugatory crossing circle of order q for a
knot K and let F be an essential torus in MK∪L = S3 − η(K ∪ L). If F
becomes compressible in one of M(q) or M(0) then it becomes compressible
in both of them.

Proof. By the proof of Lemma 2.2, we have minimal genus surface S of
K that intersects the cosmetic crossing disk D, bounded by L, at a single
arc α. In fact, we may take D to lie a neighborhood of α contained in
a neighborhood of S. Furthermore, the surface S(q), obtained after the
cosmetic crossing change, is of minimal genus for K(q).

Let F be an essential torus in MK∪L. Suppose that F becomes com-
pressible in M(0) = S3 − η(K); the argument in the case that F becomes

compressible in M(q) = S3 − η(K(q)) is completely analogous.
Let E be a compressing disk for F in M(0). We have K ∩ E = ∅. Hence

the intersection S ∩E, if non-empty, is a collection of simple closed curves.
Since S is minimal genus for K, it is incompressible in M(0). Since M(0)
is irreducible, by an innermost argument we may isotope S in M(0) so that
E ∩ S = ∅. Since L lies in a neigborhood of S we may arrange so that
L ∩E = ∅. Thus E will survive as a compressing disk of F in any manifold
obtained Dehn filling along L. In particular F will remain compressible in
S3 − η(K(q)).

�

The following lemma is proved by arguments similar to those in the proofs
of Lemma 2.2.

Lemma 2.4. [8, Lemma 4.6] Let V ⊂ S3 be a knotted solid torus such that
K ⊂ int(V) is a knot which is geometrically essential in V and K has a
crossing disk D with D ⊂ int(V). If K is isotopic to K(q) in S3, then K(q)
is also geometrically essential in V . Further, if K is not the core of V , then
K(q) is also not the core of V .

The next lemma discusses the interplay of nugatory crossing changes with
satellite operations.

Lemma 2.5. Let V ′ ⊂ S3 be a standardly embedded solid torus. Let K ′ be
a knot that is geometrically essential in V ′ and let D′ be a crossing disk for
K ′ that lies in V ′. Suppose that there is an orientation preserving homeo-
morphism h : V ′ → V ′ that takes the preferred longitude of V ′ to itself and
such that h(K ′(q)) = K ′(0). Then if L′ = ∂D′ is nugatory for K ′ in S3, it
is also nugatory for K ′ in V ′.

Proof. Note that the existence of h as in the statement above implies that
K ′(q) and K ′ are ambiently isotopic in V ′. Suppose L′ is nugatory. Then
L′ bounds a crossing disk D′ in V ′ and another disk D′′ in the complement
of K ′. We may assume D′ ∩D′′ = L′.
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Figure 2. The solid torus V ′, cut into two components by
A, as in the proof of Lemma 2.5.

If D′′ ⊂ V then there is nothing to prove. Otherwise, let AV ′ = D′ ∪
(D′′ ∩ V ′). Now AV ′ contains a component (A, ∂A) ⊂ (V ′, ∂V ′) that is a
a properly embedded planar surface in V ′, so each component of ∂A is a
preferred longitude of V ′, and we have D′ ⊂ A.

Since h takes the preferred longitude of V ′ to itself, there is an orientation
preserving homeomorphism H : S3 → S3 such that H|V ′ = h. Up to isotopy
on ∂V ′ we may assume that for every component C ⊂ D′′ ∩ ∂V ′, we have
H(C) = C. The sphere Σ = D′ ∪D′′ defines (possibly trivial) connect sum
decompositions of K ′(q) and K ′(0). Since H preserves each decomposition
we may arrange so that H(Σ) = Σ. Then H maps each component of
Σ ∩ V ′ to itself; in particular H(A) = A. By further isotopy on A we may
arrange so that H leaves invariant each of D′, D′′ and V ′. To summarize,
we can find ambient isotopy {Ht}0≤t≤1 of S3 so that: (i) H0 = H; (ii)
Ht(K

′(q)) = K ′(0), for all 0 ≤ t ≤ 1; (iii) H1(D
′) = D′, H1(D

′′) = D′′ and
H1(V

′) = V ′. Thus, by replacing our original h with H1|V ′ , we may assume
h(A) = A and A cuts V ′ into two components, V ′1 and V ′2 . An example
where A is an annulus is shown in Figure 2.

Case 1. Suppose that h(V ′i ) = V ′i , for i = 1, 2. Now Σ = D′ ∪ D′′
separates S3 into two 3-balls, B1 and B2. Assume that V ′i ⊂ Bi for i = 1, 2.

On A let τ−qL′ denote the −q power of the Dehn twist along L′. If viewed as

an auto-diffeomorphism of Σ, τ−qL′ extends to an auto-diffeomorphism Tof

B2 that is the identity off of a collar neighborhood of B2. Define f : S3 →
S3 to be identity on B1 and T on B2. This is an orientation-preserving
homeomorphism that brings K ′(q) to K ′(0). Using h as above we identify
V ′i with h(V ′i ) and K ′(0) with K ′(q) and simply denote it by K ′.

Let X be the 3-manifold obtained from V ′2 by drilling out a neighborhood
of K ′ ∩V ′2 . Now f restricted to X is a homeomorphism whose restriction to
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∂V ′2 is a Dehn twist along L′. By a result of McCullough [10, Theorem 1],
L′ bounds a disk in V ′2 ⊂ (V ′ − η(K ′)). Thus L′ is nugatory in V ′.

Case 2. Suppose that h : V ′ → V ′ maps V ′2 to V ′1 . The sphere Σ defines
connect sum decompositions of K ′(q) and K ′(0). We have h(K ′(q) ∩ V ′1) =
K ′(0) ∩ V ′2 and h(K ′(q) ∩ V ′2) = K ′(0) ∩ V ′1 .

On A let τ−qL′ denote the −q power of the Dehn twist along L′ and let T its

extension to B2 as in Case 1. Define f : S3 → S3 to be identity on B1 and T
on B2. Let r : S3 → S3 denote a rotation of 180 degrees with axis a circle on
Σ passing through the two points comprising Σ∩K ′(q) = Σ∩K ′(0). Up to
isotopy in each of B1 and B2 we may assume that r(K ′(q)∩V ′1) = K ′(0)∩V ′2
and r(K ′(q)∩V ′2) = K ′(0)∩V ′1 . Now define g : S3 → S3, by g = f ◦r. This is
an orientation-preserving homeomorphism with g(K ′(q)∩V ′i ) = K ′(0)∩V ′i ,
for i = 1, 2. As in Case 1, using h we identify V ′i with h(V ′i ). Now apply
to g an argument identical to this applied to f above, and again appeal to
McCullough’s result to get the desired conclusion.

�

We close the section with the following lemma of Motegi [11] that we need
for the proof of the main results.

Lemma 2.6. [11, Lemma 2.3] Let K be a knot embedded in S3 and let V1
and V2 be knotted solid tori in S3 such that the embedding of K is essential
in Vi for i = 1, 2. Then there is an ambient isotopy φ : S3 → S3 leaving K
fixed such that one of the following holds.

(1) ∂V1 ∩ φ(∂V2) = ∅.
(2) There exist meridian disks D and D′ for both V1 and V2 such that

some component of V1 cut along (DtD′) is a knotted 3-ball in some
(unknotted) component of V2 cut along (D tD′). See Figure 5.

3. Winding number zero satellites

In this section we prove the results stated in the introduction.
Given a link J ⊂ S3, a maximal system of companion tori of J is a finite

collection of tori T in MJ = S3 − η(J) with the properties that the tori in
T are essential, no two tori in T are parallel in MJ , and each component
of MJ cut along T is atoroidal. By Haken’s Finiteness Theorem [5, Lemma
13.2] such a collection exists.

Recall that an essential annulus in a 3-manifold M with boundary is a
properly embedded annulus that is incompressible and cannot be homotoped
to lie in ∂M . We need the following known result.

Lemma 3.1. Let C be a knot such that the complement MC = S3 − η(C)
contains essential annuli. Then C is either a cable or a composite knot.
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Proof. Let T be a maximal system of companion tori for MC and let N
be the component of MC cut along T that contains ∂η(C). Since N is an
atoroidal manifold containing essential annuli it is a Seifert fibered space.
By [6, Lemma V1.3.4] there are three possibilities:

(1) ∂N has one component and MC is the exterior of a torus knot.
(2) ∂N has two components and N is the exterior of a satellite of a torus

knot in a solid torus.
(3) ∂N has three components and D is a product of a disk with two

holes with a circle.

In cases (1), (2), C is a cable knot while in case (3) C is a composite knot. �

Recall that K is the class of knots which do not admit cosmetic generalized
crossing changes.

Theorem 1.3. Let C be a non-trivial, prime, non-cable knot and let V ′

be a standardly embedded solid torus in S3. Let K ′ ∈ K and suppose that
K ′ is embedded in V ′ so that it is geometrically essential and such that
w(K ′, V ′) = 0. Then any knot K that is a satellite of C with pattern (V ′,K ′)
admits no cosmetic generalized crossing changes of any order. That is K
satisfies the nugatory crossing conjecture.

Proof. Let (V ′,K ′) be as in the statement of the theorem and consider the
satellite map f : (V ′,K ′) → (V,K) with core(V ) = C. Suppose that K
admits an order-q cosmetic crossing change, and let D be the corresponding
crossing disk with L = ∂D. Let T = ∂V .

Since C is a prime, non-cable knot, by Lemma 3.1, there are no essential
annuli in S3 − V . Hence, by Lemma 2.2, we may assume D ⊂ V , so T is also
a companion torus for the satellite link K∪L. The link K ′∪L′ = f−1(K∪L)
is a pattern for K ∪ L with the satellite map f : (V ′,K ′, L′)→ (V,K,L) as
above. We will show that L′ is an order-q cosmetic crossing circle for K ′,
which is a contradiction since K ′ ∈ K.

Since L is cosmetic, M = MK∪L is irreducible. Consider a maximal
system of companion tori T for M . A torus F ∈ T is called innermost with
respect to K if M cut along T has a component N such that ∂N contains
∂η(K) and a copy of F .

Claim. Let F ∈ T be an essential torus in W = V − η(K ∪ L). If F

becomes inessential in one of V − η(K) or V − η(K(q)), then it becomes

inessential in both of them. Furthermore, F bounds a solid torus F̂ ⊂ V

with L and K contained in F̂ . In particular, if T is innermost with respect
to K, then W is atoroidal.

Proof of claim. Let F ⊂W be an essential torus and let F̂ be a solid torus
bounded by F in S3. Suppose, without loss of generality, that F becomes
inessential in N = V − η(K). That is, in N either F becomes parallel to a
component of ∂N or it becomes compressible. If F is parallel to a component
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Figure 3. The knotted torus F from Case 1. A general-
ized crossing change of order q will make F essential in the
complement of K(q).

of ∂N , then F̂ ⊂ V . If F , on the other hand, becomes compressible in N ,
then we may choose a compressing disk and compress F along it to obtain 2-
sphere Σ. Since N is irreducible, Σ bounds a 3-ball B ⊂ N . Hence, we have

argued that an essential torus F in W either bounds a solid torus F̂ ⊂ V
or else F bounds a space X ⊂ V obtained by drilling out a 1-handle from a

ball B ⊂ N . Note that X = S3 − F̂ . We treat these two cases separately.

Case 1. F bounds a space X ⊂ V obtained by drilling out a 1-handle
from a ball B ⊂ N . Then K is disjoint from X. Furthermore, since F
compresses in N , L must meet a disk that can be used to compress F down
to Σ in N . It follows that K ∪ L is disjoint from X. See Figure 3 for an
example.

The torus F is essential in W and it becomes compressible in N , which is
the 3-manifold obtained from W by filling ∂η(L) with slope 0. By Gabai’s
result [4, Corollary 2.4], F must remain essential when we fill ∂η(L) with any
other slope, in particular when we fill with slope (−1/q). Thus F is essential

in V − η(K(q)). Since T = ∂V is essential in S3 − η(K(q)), it follows that

F is essential in S3 − η(K(q)). On the other hand, since F compresses in

N , it compresses S3 − η(K). This is, however, impossible by Lemma 2.3.
Therefore this case will not happen.

Case 2. F bounds a solid torus F̂ ⊂ V . As discussed above, in N the
torus F becomes parallel to a component of ∂N . Since F is essential in W
and M , it can’t become parallel to T in N . Thus F is parallel to ∂η(K) in
N . Now we have two possibilities:

(i) K ⊂ V − F̂ and, since F is incompressible, L ⊂ F̂ ; or

(ii) L,K ⊂ F̂ .

First suppose that K ⊂ V − F̂ . If F̂ is knotted, then either L is the core

of F̂ or L is a satellite knot with companion torus ∂F̂ . This contradicts the
fact that L is unknotted. Hence F is an unknotted torus. By definition, L

bounds a crossing disk D. Since D meets K twice, D∩ext(F̂ ) 6= ∅. We may
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K

V

F̂

L

→

→

Figure 4. A portion of the solid torus V containing the

unknotted solid torus F̂ from Case 2.

assume that D has been isotoped (rel boundary) to minimize the number
of components in D ∩ F . Since an innermost component of D − (F ∩D) is

a disk and L is essential in the unknotted solid torus F̂ , D ∩ F consists of

standard longitudes on the unknotted torus F . Hence D ∩ ext(F̂ ) consists
of either one disk which meets K twice, or two disks which each meet K

once. In the first case, L is isotopic to the core of F̂ , which contradicts F

being essential in W . In the latter case, the linking number lk(K, F̂ ) = ±1.
So K can be considered as a connect sum K#U , and the crossing change at
L takes place in the summand U . (See Figure 4.) Since K ′ is geometrically
essential in V ′ there is no essential annulus in V ′ − η(K ′) whose boundary
consists of meridional curves of ∂η(K ′). It follows that U is the unknot.
The unknot does not admit cosmetic crossing changes of any order by [12],
so K(q) ∼= K#K ′ where K ′ 6∼= U . This contradicts the fact that K(q) ∼= K.

Suppose, for a moment, that the given torus T is innermost with respect
to K, in the sense that if M cut along T has a component N such that ∂N
contains ∂η(K) and a copy of T . Then possibility (ii) cannot happen, for
then F would be a torus in T that is “closer” to K than T . Thus, if T is
innermost, we can’t have any essential tori in W .

To continue with the proof of the claim, suppose that L,K ⊂ F̂ . Then
F is a companion torus of the link K ∪ L. Since F becomes inessential in
N , F cannot be a companion torus of K(0); in fact K(0) must be the core

of F̂ ⊂ V in N . By Lemma 2.4, K(q) also becomes the core of F̂ ⊂ V in

V − η(K(q)). This finishes the proof of the claim.

To continue with the proof of the theorem, we will call a torus F ∈ T
admissible if it lies in W = V − η(K ∪ L) and F remains essential in N =

V − η(K).
If K(q) is not geometrically essential in V then, by Lemma 2.4, the same

must be true forK. But this contradicts V being a companion forK, soK(q)

must be essential in V . Hence T is essential in both N and V − η(K(q)).
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D D′

V

Φ(V )

Figure 5. A knotted 3-ball created by the meridian disks
D and D′.

If W does not contain any admissible tori then we work with the compan-
ion torus T . Otherwise we will replace T with an admissible torus, F ⊂ W

that is innermost with respect to that property. That is, F̂ − η(K ∪ L) does
not contain an essential torus that remains essential in the complement of K
or K(q). We will argue that this innermost companion torus has to remain
invariant under an orientation-preserving homeomorphism of S3 that brings
K to K(q). For simplicity of notation we will still denote this torus by T
and the corresponding solid torus by V .

Since L is cosmetic, there is an ambient isotopy ψ : S3 → S3 taking
K(q) to K(0) such that V and ψ(V ) are both knotted solid tori containing
K(0) = ψ(K(q)) ⊂ S3. Then, Lemma 2.6 applies to conclude that there is
an ambient isotopy φ : S3 → S3, fixing K(0), such that, if we let Φ = (φ◦ψ),
one of the following holds:

(1) Φ(T ) ∩ T = ∅.
(2) There exist disjoint meridian disks D and D′ for both V and Φ(V )

such that some component of V cut along (D t D′) is a knotted
3-ball, say BV , in some unknotted component of Φ(V ) cut along
(D tD′). (See, for example, Figure 5.)

Suppose we have option (2): Let B′ denote the component of Φ(V ) cut
along (D t D′) that doesn’t contain BV . The boundary of the solid torus

B′ ∪BV , pushed slightly inside V , gives an essential torus in V − η(K ∪ L)
which remains essential in the complement of K or K(q). This, however,
contradicts the assumption that T = ∂V is an innermost admissible torus.
Thus option (2) cannot happen and we conclude Φ(T )∩T = ∅. Since T is a
maximal system of companion tori for MK∪L, and T is innermost admissible,
we conclude that T and Φ(T ) are parallel in MK . So, after an isotopy which
fixes K(0) ⊂ S3, we may assume that Φ(V ) = V .

Let h = (f−1 ◦Φ ◦ f) : V ′ → V ′. Then h maps K ′(q) to K ′(0), and takes
the longitude of V ′ to itself. The knots K ′(q) and K ′(0) are isotopic in S3.
So either L′ gives an order-q cosmetic generalized crossing change for the
pattern knot K ′, or L′ is a cosmetic crossing circle for K ′. Since K ′ ∈ K, L′
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has to be nugatory. By Lemma 2.5, L is nugatory for K, which contradicts
our assumption that L is cosmetic.

�

We now restate and prove Corollary 1.4 from Section 1.

Corollary 1.4. Let K be a prime knot that is not a torus knot or a cable
knot. Then no Whitehead double of K admits a cosmetic generalized crossing
change of any order.

Proof. All Whitehead doubles admit a pattern (V ′, U) where U is the un-
knot, w(U, V ′) = 0, and U intersects every meridian disc of V ′ twice. Since
U ∈ K, if K is non-trivial, the result follows immediately from Theorem
1.3. Now suppose that K is also the unknot. Then any Whitehead double
of K is a twist knot. These knots are known to be 2-bridge knots and the
conclusion follows from [13]. Alternatively, the conclusion also follows from
the methods of [3] since twist knots have genus one and by [9], admit unique
minimal genus Seifert surface.

�

A carefull observation of the proof of Theorem 1.3, reveals that the hy-
potheses that C be a prime, non-cable knot and that w(K ′, V ′) = 0 allow
us, using Lemma 2.2, to isotope a potential cosmetic crossing disk inside
the companion solid torus V . Once this is done, the above hypotheses are
not used again. In other words, the arguments in the proof of Theorem 1.3
show that if K ′ ∈ K then no crossing circle inside V can support a cosmetic
crossing change. In fact we have the following.

Theorem 3.2. Let C ∈ K be a non-trivial knot and let V ′ be a standardly
embedded solid torus in S3. Let K ′ ∈ K and suppose that K ′ is embedded in
V ′ so that it is geometrically essential. Then any knot K that is a satellite
of C with pattern (V ′,K ′) admits no cosmetic generalized crossing changes
supported on crossing circles disjoint from the companion torus T = ∂V .

Proof. Let (V ′,K ′) be as in the statement of the theorem and consider the
satellite map f : (V ′,K ′) → (V,K) with core(V ) = C. Suppose that K
admits an order-q cosmetic crossing change, and let D be the corresponding
crossing disk with L = ∂D, such that L ∩ T = ∅.

After isotopy we may assume that each component of D ∩ T bounds a
disk in D whose interior intersects K.

First suppose that D ∩ T contains a component bounding a disk E ⊂ D
whose interior is intersected exactly once by K. The disk E is a meridian
disk of V . It follows that K is a composite knot, K = K ′#C, and T is
the follow-swallow torus. Furthermore, the cosmetic order-q crossing must
occur on the companion C. However, this contradicts the fact that C ∈ K.
Thus this case will not happen.



KNOTS WITHOUT COSMETIC CROSSINGS 13

Assume, therefore, that every component of D ∩ T bounds a disk on D
whose interior is pierced exactly twice by K. It follows that every component
of D ∩ T is parallel to ∂D on D. Thus we may slide T off of D to assure
that D ⊂ V . Now T is also a companion torus for the satellite link K ∪ L.
The link K ′ ∪L′ = f−1(K ∪L) is a pattern for K ∪L with the satellite map
f : (V ′,K ′, L′)→ (V,K,L) as above. The situation is exactly as before the
statement of the Claim in the proof of Theorem 1.3. The argument therein
applies to show that L′ is an order-q cosmetic crossing circle for K ′, which
is a contradiction since K ′ ∈ K.

�
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