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Abstract

A macroscopic model for a non-isothermal cathode catalyst layer (CL) in a proton exchange membrane (PEM) fuel cell is presented, in
which liquid water in the CL pores is neglected. The model couples three phases: an electrically conductive carbon/platinum phase, gas pores,
and a proton-conducting Nafion phase. The reaction–diffusion dynamics are described by a nonlinear system of differential equations which,
due to the wide range of physical parameters, is very stiff. To reduce the stiffness of the system, an appropriate scaled model is introduced. A
numerical algorithm consisting of two embedded Newton loops, specifically developed to handle the stiffness, is presented. Several numerical
results are used to investigate the dynamics of the layer and the validity of the interface reduction, or zero CL thickness limit, which is
often used in large fuel cell computations. In the limit of infinite water adsorption rate between ionomer phase and pore, a boundary layer
emerges at either side of the CL, in which the water sorption equilibrium [Zawodzinski, T., Derouin, C., Radzinski, S., Sherman, R., Smith,
V., Springer T., Gottesfeld, S., 1993. A comparative study of water uptake by and transport through ionomeric fuel cell membranes. Journal of
the Electrochemical Society 140, 1981–1985] between ionomer and pore is violated.
� 2006 Elsevier Ltd. All rights reserved.

PACS: 02.70.Dh; 47.11.+j; 47.70.Fw; 82.20.−w; 82.20.Wt; 82.45.Fk
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1. Introduction

Fuel cells promise to deliver an environmentally benign fu-
ture technology which yields highly efficient energy conversion
(Serfass et al., 1994). In essence, hydrogen fuel cells combine
hydrogen and oxygen in a spatially separated electrochemical
reaction to produce electricity, with water being the only end
product. There are many scientific, technological and engineer-
ing challenges to be solved in order to make fuel cells econom-
ically viable, efficient, reliable and durable under a wide range
of operating conditions (Eikerling et al., 2005).

In this paper, a macro-homogeneous model for the compet-
ing processes in the cathode catalyst layer (CL) of a proton ex-
change membrane (PEM) fuel cell is presented. The layer is a
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very thin (≈ 10 �m) three-phase medium, in which the electro-
chemical reaction takes place. It consists of (i) gas pores which
supply oxygen and contain nitrogen, gaseous and liquid wa-
ter, (ii) distributed ionomer (PEM) portions, a complex porous
medium which adsorbs water and facilitates proton conduction,
embedded in (iii) an agglomeration of carbon (electronic con-
ductor) and platinum catalyst.

The CL must conduct electrons, protons, and oxygen to the
active catalyst sites. The protons and electrons originate in the
anode CL from the oxidation of hydrogen. The protons migrate
across the charge selective membrane which separates anode
from cathode, while the electrons flow through an external cir-
cuit from the anode to the cathode. Oxygen gas migrates from
gas flow channels on the cathode side, through the gas diffusion
layer (GDL), and into the CL. Thus the protons arrive from the
polymer membrane side of Fig. 1 while the electrons and oxy-
gen arrive from the backing layer (GDL). The oxygen is trans-
ported in the gas phase, the electrons in the conductive carbon
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Fig. 1. The cathode catalyst layer is a three-phase medium consisting of
a carbon/platinum phase (electronic conductor), the ionomer (protonic con-
ductor) and gas pores (oxygen supply). This facilitates the half-cell reaction
O2 + 4H+ + 4e− → 2H2O. Water is present in both the ionomer and the
pores. In macroscopic models, this intricate structure is modelled using a
homogenized medium with average values and transport properties for all
variables. In this paper, x = 0 denotes the PEM–CL interface while x = l

denotes the CL–GDL interface.

phase, and the protons in the hydrated ionomer phase. The cen-
tral question is, at given operating conditions, where within the
CL the reaction takes place, and how is the reaction distribution
sensitive to the operating conditions and CL composition.

CL models have recently received increasing attention
(Eikerling et al., 2005; Pisani et al., 2003; Siegel et al., 2004).
The models range in complexity from simplistic yet analytical
(Eikerling et al., 2005) to comprehensive and complex (Pisani
et al., 2003; Siegel et al., 2004). Eikerling et al. (2005) has
modelled the impedance of the layer with only two effects,
oxygen diffusion in the pores and ohmic losses in the PEM.
This allows (by definition) for time dependency of the vari-
ables. This was later extended to cover agglomerate models
including liquid water transport (Eikerling, 2006). A key ques-
tion, which arises at the agglomerate level, is how mesoscopic
pore level characteristics affect the transport characteristics at
the macroscopic level, i.e., at the layer scale (Pisani et al., 2004;
Wang et al., 2004). There exists an intricate interplay between
porosity and pore size distribution on one side, and liquid water
distribution and performance of the layer on the other side.

A very comprehensive CL model was suggested by Siegel
et al. (2004). It draws particular attention to liquid water in
the pores and predicts a large impact on the CL performance.
However, the authors assume that the different phases in which
water can be present, namely ionomer and pore (liquid and
vapour) water, are at equilibrium. There are indications that this
is not the case under fuel cell operation (Berg et al., 2004) and
this problem forms part of this paper.

The comprehensive macro-homogeneous model considered
in this paper describes a non-isothermal CL in a PEM fuel cell
run with pure oxygen feed. Although liquid water in the pores
plays a crucial role in the CL dynamics, it is neglected in this

study. The main reason is that a model, void of liquid water
in the pores, should be studied and analysed in detail first, be-
fore the poorly understood transport of liquid pore water is in-
cluded. Only water in vapour form is considered in the pores.
In addition, this approach is a good approximation when oper-
ating conditions entail low current densities and low humidity
(Eikerling, 2006). In contrast, the ionomer can assume full sat-
uration, thereby enhancing proton transport. The model couples
the transport processes for the three phases:

(1) C/Pt (electric potential),
(2) pores (oxygen and water vapour concentrations, pressure),

and
(3) ionomer (proton concentration, water content, electric po-

tential).

The temperature is assumed to be the same for all three phases
with heat transport dominated by the conduction in the car-
bon phase. Although the microscopic and mesoscopic structure
of this complex medium plays a crucial role with respect to
its performance characteristics (Eikerling, 2006; Pisani et al.,
2003), this article will focus on macroscopic effects. The un-
derlying structure enters the model through key parameters of
the reactive medium.

The paper is organized as follows. First we present the model
in Section 2, a reaction–convection–diffusion system, where
diffusion is the dominating transport mode. To simplify the ini-
tial (dimensional) model, some reduction of the nonlinear dif-
fusive coefficients and source terms is made. An appropriate
scaling of variables leads to a better-conditioned system of non-
linear differential equations (NDE). The details of the scaling
are presented to the interested reader in Appendix A. In addi-
tion, the computational results show that the numerical method,
presented in Appendix B, is well suited for such kind of non-
linear problem. In fact, it represents a typical inverse problem
with respect to the boundary value of one of the variables, the
ionomer electric potential at the CL–PEM interface. In order
to identify the contribution of different key parameters (e.g.
rate of water evaporation from ionomer into pore, Berg et al.,
2004) to the CL fluid dynamics, we have made a number of
numerical simulations that we present in the second part of this
paper (Section 3). Special attention is drawn to the interface
reduction of the CL and the assumption of PEM water sorption
equilibrium (isotherm) (Berg et al., 2004). A brief analysis of
a boundary layer, which emerges from the numerical results, is
given in Appendix C.

2. Model

In this section, a macro-homogeneous model is presented
which treats the CL as a homogenized medium with aver-
age transport properties, described parametrically in the gov-
erning equations. These parameters depend intricately on the
microscopic and mesoscopic structure of the layer (Eikerling,
2006; Pisani et al., 2003). However, the goal of this publica-
tion is not to relate the detailed structure of the medium to its
macroscopic transport characteristics. The aim is to analyse the
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coupling of the macroscopic transport processes and its impact
on the functionality of the medium.

Following Fig. 1, we chose x ∈ (0, l) as the space variable,
where x = 0 denotes the membrane–CL interface and x = l

the CL–GDL interface.1 The system equations describe the dy-
namics of the eight primary unknown variables

ionomer water content, cm
w ,

ionomer electric potential, �,
temperature, �,
pore gas pressure, p,
pore vapour concentration, cv ,
pore oxygen concentration, co,
C/Pt electric potential, U ,
over-potential, �,

for which we will need eight equations. In what follows, addi-
tional variables will be introduced but they are all dependent on
the eight variables above and, therefore, not independent. The
governing equations can be split into the three phases as fol-
lows, where we assume that the temperature is locally identical
in all phases.

Ionomer: The primary variables of the ionomer are local wa-
ter content cm

w , hydronium concentration c+, electric potential
� and temperature �, governed by

d

dx

(
−Dw

d

dx
cm
w

)
= 3

2
Sc − �amIw, (1)

d

dx

(
D+

(
− F

R�
c+

d

dx
� − d

dx
c+
))

= −Sc, (2)

− d

dx

(
�c

d

dx
�

)
=
(

�c
s

4
� + F�

)
Sc − hv�amIw, (3)

where d/dx denotes the gradient with respect to x.
The ionomer phase carries water and protons. It consists of

a hydrophobic polymer backbone to which, in case of Nafion,
sulphonic acid groups (SO3H) are attached. These acid groups
form a local ion exchange equilibrium with the surrounding
water molecules and hydronium ions (H3O+) (Berg et al., 2004)
as the protons dissociate:

SO3H + H2O ↔ SO−
3 + H3O+ (4)

Assuming local electro-neutrality, this ion exchange equilib-
rium leads to a local hydronium concentration c+ as a function
of the water concentration of the ionomer (Berg et al., 2004)

c+ := c+(cm
w) = −kH

2
cm
w +

(
1

4
(kH cm

w)2 + kH acm
w

)1/2

. (5)

Hydronium electro-diffuses across the ionomer, driven
by concentration gradients and the electric field. Reflect-
ing a fundamental property of ion-exchange membranes,

1 Throughout this paper, an overlined variable denotes a dimensional
variable, while a non-overlined variable generally denotes a dimensionless
variable.

concentration gradients exist although the ionomer is electro-
neutral (Paddison et al., 2000). Electro-diffusion is typically
described by the Nernst–Planck equation (2), where a local sink
term Sc, the so-called Butler–Volmer equation (see detailed
discussion below), arises due to the half-cell reaction

O2 + 4H3O+ + 4e− → 6H2O (6)

Effectively, we consider a water drag coefficient equal to one
since protons are assumed to flow only as hydronium, whose
concentration is denoted by c+. The water profile through the
ionomer phase is thus described by Eq. (1), where an explicit
water drag coefficient can be omitted since the water drag (equal
to one) has been incorporated into the transport equation (2) for
hydronium (Berg et al., 2004). The water diffusion through the
ionomer is nonlinear, with a diffusion coefficient that depends
linearly on the water concentration (Berg et al., 2004). This
reflects the changing pore structure and pore connections of the
PEM with water content. The source term Sc for water is based
on the usual assumption that water is produced at the catalyst
surface in the ionomer phase.

The Iw term, defined by

Iw = cm
w − c∗

w, (7)

describes the deviation from water sorption equilibrium at the
interface between ionomer and gas phase, and is set to be pro-
portional to the water flux across that interface (Berg et al.,
2004). When no current is drawn, we find Iw =0. Then cm

w =c∗
w

and the ionomer water content cm
w is solely determined by the

relative humidity r in the gas pores via

c∗
w := c∗

w(�, cv) = a(0.3 + 10.8r − 16r2 + 14.1r3). (8)

This equation is, therefore, called water sorption isotherm and
its shape has been measured for various types of PEM by sev-
eral researchers (Zawodzinski et al., 1993). In this paper, Eq. (8)
describes the water sorption isotherm of bulk Nafion and must,
therefore, be considered as a qualitative rather than quantita-
tive relationship. Note that for an isolated membrane, it takes
between 10 and 1000 s to reach that equilibrium.

In our averaged model not all elements of the ionomer are
in contact with the gas phase, and thus it is inappropriate to
impose the equilibrium water sorption condition cm

w =c∗
w when

a current is drawn. However, the water sorption could be near
equilibrium, given by c∗

w, even though the whole system is not
in equilibrium under stationary fuel cell operation, as long as
the time scale for water sorption and diffusion within the PEM
are sufficiently small as compared to the time scale of water
production (Berg et al., 2004). Therefore, we impose that the
exchange of water between ionomer and gas phase is propor-
tional to the disequilibrium (7). The constant of proportionality
�am, a water adsorption rate coefficient, scales like

�am ∼ De�

d
, (9)

where De is an effective water diffusivity, � is a local surface
area density (m2/m3) and d is an average distance of points
in the ionomer phase to an ionomer–gas pore interface. In this
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paper, we choose �am = 5.7 s−1, which is several orders of
magnitude smaller than what Pisani et al. (2003) used. Note
that as �am → ∞, cm

w approaches c∗
w, corresponding to sorption

equilibrium. The sensitivity of the model to this key parameter
will be analysed in Section 3 and in the Appendix.

Finally, we assume that temperature is identical in all three
phases (see Eq. (3)). Linear heat transfer is governed by re-
versible and irreversible heat generation in the reaction (term
∼ Sc), and evaporative cooling when a water flux �amIw leaves
the ionomer and enters the pore.

Gas pore: The three equations needed are conservation of
mass in the pore (Eq. (10)), with a local sink term due to
water adsorption of the ionomer and oxygen consumption in
the reaction, and convection–diffusion transport of oxygen
(Eq. (12)) and water vapour (Eq. (11)), with corresponding
source terms. Note that liquid water is not modelled in the gas
pore phase. For the chosen parameters of this model, diffu-
sion is the dominant gas transport effect and convection plays
only a minor role due to the small permeability of gas pores
(Stumper et al., 2005). In fact, gas transport in CL gas pores is
often modelled by Knudsen diffusion (Stumper et al., 2005).
We will see in the results section, however, that convection is
not negligible altogether.

d

dx
(� u) = �amMvIw − Mo

4
Sc, (10)

d

dx

(
−Dvc

d

dx

(
cv

c

)
+ cvu

)
= �amIw, (11)

d

dx

(
−Doc

d

dx

(
co

c

)
+ cou

)
= −1

4
Sc. (12)

Here, Do = Dv holds because we have a binary mixture.
Carbon/Pt: The electric potential of the carbon phase follows

Ohm’s law with a sink term due to electron consumption in the
reaction. It is related to the local over-potential �, equilibrium
electrode potential Eo and ionomer potential � (Berg et al.,
2004).

	c

d2

dx2 U = −FSc, (13)

� = Eo − U + �. (14)

The remaining (dependent) variables are explained in Table 1
and in Eqs. (15)–(23).

Dw = dw

a
cm
we−2436/�, (15)

D+ = d+
a

cm
we−1663/�, (16)

c = cv + co, (17)

Sc = 	pmi0,c

F co,ref

(
c+
a

)ec

(co − �Sc) exp

(
F

2R

�

�

)
,

�, 	pm > 0; it follows that

Table 1
List of main parameters and dependent variables

Variable Unit

cm
w ionomer water conc. mol/m3

�(
) ionomer potential (in plots) V
� temperature K
u velocity m/s
cv vapour molar con. mol/m3

c total gas molar conc. mol/m3

� over-potential V
c+ ionomer proton conc. mol/m3

�0 GDL/CL potential V
p gas pressure Pa
� density kg/m3

co oxygen molar conc. mol/m3

U carbon phase potential V
Sc reaction rate mol/(m3 s)

Sc = 	pmi0,c

F co,ref

(
c+
a

)ec

co exp

(
F

2R

�

�

)

×
(

1 + �
	pmi0,c

F co,ref

(
c+
a

)ec

exp

(
F

2R

�

�

))−1

, (18)

r = R

101300
cv� 10−Q(�), (19)

Q(�) = − 2.18 + 0.029(� − 273.2) − 9.18 × 10−5

× (� − 273.2)2 + 1.44 × 10−7(� − 273.2)3, (20)

p = R�c, (21)

u = −K

�

d

dx
p, (22)

� = Mvcv + Moco + Mncn (using p = R�c)

= (Mv − Mn)cv + (Mo − Mn)co + Mn

R

p

�
. (23)

Eq. (15) describes nonlinear ionomer water diffusion and (16)
nonlinear hydronium diffusion.

Eq. (18), the Butler–Volmer equation, is the local reaction
rate as a function of hydronium and oxygen concentration as
well as over-potential. Note that we introduced a term (co −
�Sc) which corresponds to the oxygen concentration at the
agglomerate catalyst (Pt) sites, when the pore concentration is
co. This reflects the transport losses of oxygen between pore and
reaction sites and leads to a limiting local reaction rate which
cannot exceed Sc =co/�. The relation between the agglomerate
structure and the effective Butler–Volmer equation has been
investigated by Pisani et al. (2003) and enters the model through
the parameter 	pm, an effective interface density (interface area
per volume). Also, we used the fact that at large cathode over-
potentials, the dependency of the local reaction rate on the over-
potential can be approximated by the reduction rate of oxygen
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alone, i.e., Sc ∼ exp[F�/(2R�)]. This is a common assumption
in fuel cell modelling and a very good approximation for the
fuel cell operating conditions under consideration (� > 0.25V)
so that deviations are negligible.

Eq. (21) is the ideal gas law and (22) Darcy’s law.
Eqs. (1)–(14) are equipped with the following boundary con-

ditions imposed on the membrane–CL interface x = 0, and on
the GDL–CL interface x = l:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cm
w(0) = given,

d

dx
cm
w(l) = 0,

�(0) = �0,
d

dx
�(l) = 0,

d

dx
�(0) = � �(0), �(l) = given,

d

dx
p(0) = 0, p(l) = given,

d

dx
cv(0) = 0, cv(l) = given,

d

dx
co(0) = 0, co(l) = given,

d

dx
U(0) = 0, U(l) = given.

(24)

In this model, oxygen is not entering the PEM. Moreover,
ionomer water can only enter the CL pores but not the GDL
pores.

Here, � is a given constant and �0, the ionomer potential, is
determined so that the prescribed total current It satisfies

F

∫ l

0
Sc dx = It . (25)

For given values of the variables at the boundaries of the CL, the
system is entirely determined by the value �0 of the ionomer
potential at the PEM–CL interface, thus defining the solution
v = v(�0). In turn, �0 is defined by imposing the total current.
This implies that the numerical solution results in two iterative
methods, namely solving the system for a given �0, then iter-
ating on �0 until the total current is matched. Each iterative
method solves a nonlinear problem, and a Newton method is
used for each of them (see also Appendix B).

3. Numerical results

The numerical code presented in Appendix B is used to iden-
tify the sensitivity of the model to the oxygen concentration at
the CL–GDL interface co(l), the mass transfer parameter � for
oxygen transport within the agglomerates, the hydration level
of the ionomer, and the water transfer rate �am between ionomer
and gas phases.2 The key question addressed in this section is
whether the interface reduction is a good approximation, i.e.,
whether the CL can be approximated well by an interface be-
tween PEM and GDL. This approach is often taken in large
three-dimensional fuel cell computations without justification.
Further goals are to investigate how �am affects the water profile

2 It shall be pointed out once more that throughout this section, overlined
variables and parameters are dimensional, whereas non-overlined quantities
are dimensionless.

Table 2
Material parameters

Value Unit

F 96 485 C/mol
a 1200 mol/m3

�c
s 546.7 J/(mol K)

dw 2.1 × 10−7 m2/s
hv 4.52 × 104 J/mol
cr 100 mol/m3

� 2.2 × 10−5 kg/(m s)
Mv 0.018 kg/mol
Mn 0.028 kg/mol
It A/cm2

�am 5.7 s−1

Eo 1.0 V
l 10−5 m
d+ 1.6 × 10−8 m2/s
�r 354 K
K 10−12 cm2

R 8.31 J/(K mol)
Mo 0.032 kg/mol
	c 3 S
� 5 × 10−4 s

(ionomer and pore) of the layer, and how the maximum current
depends on � and co(l) (Tables 1 and 2).

3.1. Reference case

Since it is rather difficult to estimate precisely each physical
parameter and coefficient of the model, such as oxygen diffu-
sion coefficient or ionomer conductivity in the CL, we take a
slightly different approach from the usual CL modelling work
found in the literature. We define a reference case, shown in
Fig. 2, to which all other results are compared. This allows us
to better understand the dynamics of the layer and the impact
of each individual parameter variation.

We observe the following notable features in the numerical
data (top left to bottom right): The ionomer water cm

w usually
flows from GDL (no-flux boundary condition, i.e., zero gra-
dient) towards the PEM. This is expected when the anode is
rather dry, reflected here by the boundary value cm

w(0). The
hydronium concentration c+ follows cm

w via (5) and is similar
in shape. This means that the electric field really drives the hy-
dronium ions from PEM towards GDL, against their concen-
tration gradient. The pressure p is almost constant and convec-
tion plays only a minor role. The over-potential � varies by less
than 0.02V. The gradients of water vapour cv and oxygen co

are of opposite signs as expected in a binary mixture, with zero
flux at the PEM interface. The model exhibits a typical mono-
tonic shape for the reaction rate Sc, with the maximum at the
GDL interface. This is due to the decreasing oxygen concentra-
tion towards the PEM (Litster and McLean, 2004; Song et al.,
2004). It is also noteworthy that Iw can change sign across the
layer. This means that in some parts the water is adsorbed from
the pores into the ionomer phase, and in other parts it evap-
orates from the ionomer into the pore (see Fig. 3). This fine
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arbitrary constant).
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Fig. 3. The water flux between ionomer and pores can change signs across
the layer. All parameters as in reference case except cm

w(0) = 6.0.

balance depends very sensitively on all remaining variables of
the system through the boundary conditions, which is symp-
tomatic for the intricate nature of the water management of the
medium.

Generally, the following variations across the layer are found
for a given set of parameters and boundary conditions:

• ionomer water concentration cw
m: < 10%;

• ionomer proton concentration c+: < 2%;
• temperature � (also denoted by T ): < 0.1 K;
• pressure p: negligible variation;
• ionomer potential � (also denoted by 
): < 0.05 V;
• carbon phase potential U : < 0.02 V;
• vapour concentration cv: < 10%;
• oxygen concentration co: up to 50% (at maximum currents);
• local reaction rate Sc: up to 50% (at very high currents only).

Note that the variations for the vapour concentration are
smaller than those for oxygen (even though it is a binary
mixture) because water can be transported in the ionomer
phase also. The water fluxes in pores and ionomer are cou-
pled. This is reflected by a non-vanishing ionomer water flux
at the PEM interface (in contrast to a zero-flux condition
for oxygen) and a non-vanishing water vapour flux in the
pores at the GDL interface. Also, convection is small but not
negligible.

These observations lead to the conclusion that a simplified
CL model might be sufficient which neglects variations in pro-
ton concentration, gas pressure and, possibly, electric potential
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Fig. 4. Polarization curve for three different oxygen concentrations at the
GDL–CL interface. For co = 10 and 25 mol/m3, three regimes of voltage
losses can be identified: kinetic regime, ohmic losses, mass transport losses.
The latter define ultimately the maximum current.

of the carbon phase. Thermal variations might be important
though when liquid water is included in the model. The deriva-
tion of such a model is planned future work.

3.2. Polarization curve

The most important macroscopic feature of the CL is the
voltage loss Uext across the layer described by Uext = Eo −
U(0) + �(1), as a function of the current drawn, It . The losses
vanish when no current is drawn (Eo = U(0) − �(1)). This
functional relationship is called the polarization curve and is
illustrated in Fig. 4. This curve is particularly important for the
overall fuel cell performance because each point on the curve
(It , Uext) also defines the power output of the device:

P = UextIt . (26)

The shape of the polarization curve depends strongly on the op-
erating conditions, for example, humidification level and oxy-
gen pressure. The plot exhibits three curves for three different
oxygen concentrations at the CL–GDL interface. This clearly
shows that high oxygen concentration, typical for pure oxygen
feed, leads to better performance of the fuel cell.

There are three characteristic regimes for each polarization
curve. For small current densities It , the external voltage drops
rapidly in an exponential fashion from the equilibrium electrode
potential Eo (Eo = 1.0 V), governed by the exponential terms
in the Butler–Volmer equation (18). This effect is solely deter-
mined by the microscopic reaction kinetics at the catalyst sites
of the layer. Adjacent we find an intermediate linear regime
where the voltage losses are mainly due to ohmic losses within
the ionomer and carbon phase. In reality, most of these losses
actually occur in the PEM, which explains the smaller than
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Fig. 5. The maximum current Imax as a function of the oxygen concentration
at the CL–GDL interface: a linear scaling emerges. All other parameters as
for the reference case.

expected slope in Fig. 4. Finally, the external voltage drops off
rapidly. The shape of this drop-off is referred to as the knee of
the polarization curve. This feature arises due to mass transport
losses of oxygen between pore and reaction sites. As the oxygen
concentration at the reaction sites, co − �Sc, approaches zero,
the over-potential � in the Butler–Volmer equation increases
rapidly. This effect is enhanced in fuel cells by the decreasing
oxygen concentration at the CL–GDL interface when a current
is drawn (Berg et al., 2004), since oxygen has to diffuse from
channel to CL. The maximum oxygen reduction driven current
(see also next section) is reached when Uext = 0, i.e., when the
external voltage of the device vanishes. This is not necessarily
equivalent to the limiting current found when the total current
does not vary with the external voltage, dIt /dU ext = 0.

3.3. Maximum current

As mentioned in the previous section, the maximum current
Imax is defined by the value of It at which Uext = 0. This value
depends strongly on the operating conditions. We will look
at the impact of two operating parameters in our model: (i)
the oxygen concentration at the CL–GDL interface co(l) and
(ii) the mass transfer parameter of oxygen transport within the
agglomerates �.

Fig. 5 exhibits a linear scaling of the maximum current with
co(l). Although this might be expected from the linear oxy-
gen dependency of the local reaction rate in the Butler–Volmer
equation (18), it is not a trivial result since the oxygen concen-
tration varies significantly (about 50%) across the CL at max-
imum currents. The plot shows why higher gas pressure, and
hence higher oxygen concentration, leads to higher maximum
currents and better performance. However, this is at the cost of
gas compression and its related energy consumption which, in
turn, leads to a trade-off in overall efficiency.
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Fig. 6. The maximum current Imax as a function of the inverse mass transfer
parameter 1/� normalized by the reference value �: the scaling deviates from
linear behaviour due to the variations of the variables across the catalyst
layer. All other parameters as for the reference case.

The relationship between maximum current Imax and 1/�
is shown in Fig. 6, where � is normalized by the reference
value used in Fig. 2. This transport parameter is linked to the
mesoscopic transport processes of oxygen at the agglomerate
level. Therefore, the structure and functionality of the CL at that
scale is of very high importance (Pisani et al., 2003). As � → 0
and so 1/� → ∞, the maximum current reaches exceedingly
unrealistic values, unseen in experiments. On the other hand,
increasing �, i.e., 1/� → 0, pushes Imax towards zero. Note that
1/� corresponds to the effective diffusivity of oxygen within
the agglomerates.

This near linear scaling of Imax with 1/�, equivalent to a
hyperbolic relationship between Imax and �, is contained in the
Butler–Volmer equation (18) for given oxygen concentration
co. For � → 0, � → ∞ implies Sc → ∞. The limit � → ∞,
however, leads to Sc ∼ co/� → 0 as � → ∞. The relationship
between Imax and � would be exactly inversely proportional if
all variables were constant across the layer. Deviations from
this trivial case, however, arise as the current drawn (It = Imax)
increases. This underlines the difference between finite and
zero layer thickness, which will be discussed next in more
detail.

3.4. Interface reduction

In many fuel cell models, the CL is treated as an interface.
In the context of this model, there are three ways of looking at
the “zero thickness” limit:

(1) Taking the limit l → 0, keeping all other parameters fixed.
This limit is unphysical since, for a given current, � →
∞ as l → 0 and the maximum current, determined by
�=Eo, is reached very quickly. This gives a minimum CL

thickness lmin, below which a prescribed current cannot be
drawn.

(2) Taking the limit l → 0 and scaling � → l�, �am →
�am/l and 	 → 	/l at the same time, as suggested in
Appendix A.
Physically, this corresponds to compressing the layer along
the through-plane to zero thickness, leaving an interface
between GDL and PEM. To leading order, all variables
become constants prescribed by the boundary conditions.
The full model reduces to a set of boundary conditions for
the PEM and GDL, respectively. The next-order correction
to this trivial model is planned future work.

(3) Choose a finite l and see whether the full solution of the
model could be represented by an interface.
This is what is effectively done in much research in the lit-
erature and we will now investigate whether this reduction
is justified.

The Butler–Volmer equation for the reaction rate at a
GDL–PEM interface usually takes the form (Berg et al., 2004)

S = Ieff c+co exp

(
F�

2R�

)
, (27)

with an (effective) exchange current density Ieff , taken to be
constant across the whole range of operating conditions. Note
that here the units of S are mol/m2/s.

Following this idea, we will now analyse how the effective
exchange current density Ieff , derived from the local current
density It , the proton and oxygen concentration, and the over-
potential via

Ieff = It

c+co exp(F�/2R�)
, (28)

varies with It . Fig. 7 exhibits this dependency. This is a test
whether our more complex CL model can be replaced by an
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Fig. 7. Variation of the effective exchange current with total current and
CL–GDL interface oxygen concentration. Except It and co(l), all parameters
as in the reference case.
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interface condition (27). The values needed in Eq. (28) are taken
at the CL–GDL interface. Only if Ieff remains unchanged when
operating conditions, i.e., boundary conditions, are varied can
the CL dynamics be reduced to an interface. This is surely the
case if all variables were constant across the layer, which will
be referred to as the first-order approximation in what follows.

For large oxygen concentrations (co(l)=25 mol/m3), as can
be found for pure oxygen feed (Berg et al., 2005), Ieff varies
with It by one order of magnitude. For smaller co(l), typical
for air feed (co(l) = 10 mol/m3) (Berg et al., 2004), a similar
variation of the effective exchange current is observed. More-
over, changing co(l) at It = 0.5 A/cm2, Ieff varies by about
200% (between 0.03 and 0.09 A/(m mol)). However, these re-
sults depend sensitively on the oxygen diffusion coefficient Do

and variations are more pronounced as Do decreases. There-
fore, it is critical to obtain an accurate estimate for this param-
eter which is estimated to be Do = 5.0 × 10−8 m2/s, following
literature values (Eikerling, 2006; Stumper et al., 2005). This
is a factor of 40 smaller than diffusion in the GDL, D

g
o ≈

2.0×10−6 m2/s, due to the small pore size in the CL. In essence,
if it is at least an order of magnitude smaller than the GDL
oxygen diffusion coefficient, Ieff can vary significantly and the
assumption that the CL can be approximated by one interface
for all types of operating conditions is likely to be invalid. This
effect will also be enhanced by the incorporation of liquid pore
water.

3.5. Over-potential vs. exchange current

We will now investigate another scaling between two pa-
rameters of the system. If the exchange current density io,c is
decreased, � must increase in order to match the same total
current It . Using the Butler–Volmer equation

S = io,c c+ co exp

(
F�

2R�

)
(29)

and keeping all parameters fixed but io,c and �, a first-order
approximation would be

io,c exp

(
F�

2R�

)
= const., (30)

thereby assuming again that all variables are constant across the
layer. However, this ignores variations in the current, potential
and concentrations along the CL. Therefore, deviations from
this trivial scaling could be expected, similar in fashion to the
results of the interface reduction of Section 3.4.

Fig. 8 shows that this first-order approximation is, in fact, a
very good assumption. Numerical results, with � taken at the
CL–GDL interface, coincide with Eq. (30). Here, relative ex-
change current refers to the reference case in Fig. 2. A vari-
ation of io,c over four orders of magnitude is captured very
well by the above approximation. This means that for standard
operating conditions, the CL dynamics scale trivially with the
exchange current and the layer can be described very well by
the first-order approximation (30).
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Fig. 8. Over-potential (taken at the CL–GDL interface) as a function of
exchange current density relative to the reference case in Fig. 2. Only the
exchange current density is varied; all other parameters as for the reference
case.

3.6. Over-potential vs. ionomer hydration level

The local reaction rate Sc scales with the proton concentra-
tion like

Sc ∼ c
ec+ , (31)

where we chose ec =1 due to the dominating step of the overall
reaction O2 +4H+ +4e− → 2H2O. Therefore, we could again
expect at first order that the over-potential, �(l), and proton
concentration, c+(l), at the CL–GDL interface are related by

c+ exp

(
F�

2R�

)
= const. (32)

providing all other parameters, such as total current and
CL–GDL oxygen concentration, remain fixed. In other words,
only the proton concentration is varied and the over-potential
changes in order to match the prescribed current.

Fig. 9 shows the over-potential as a function of the proton
concentration, using the reference case and setting cm

w(0) =
1, 2, 3, . . . , 14. This prescribes c+ via the ion exchange equi-
librium c+ = c+(cm

w). Surprisingly enough, the numerical data
points cannot be matched with the above lowest-order approx-
imation for all c+. Above c+ ≈ 0.7, or cm

w ≈ 7.5, it is well ap-
proximated for ec =1. For c+ < 0.7, however, it is much closer
to the ec = 2 curve. It shall be pointed out though that cm

w < 3,
equivalent to c+ = 0.55, corresponds to a very poorly humid-
ified ionomer phase, usually unseen under normal operating
conditions. Note that all three curves intersect at the reference
case cm

w = 7.0, where c+ ≈ 0.69, which is used as the starting
point for the extrapolation.

When all boundary conditions are fixed and only cm
w(0) is

varied, the nonlinearity in the problem causes the other vari-
ables to change. In this situation, (32) would hold if the water
content had no impact on the oxygen concentration. However,
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Fig. 9. Over-potential � (taken at the CL–GDL interface) as a function of the
proton concentration c+ at the CL–PEM interface. Although we use a value
of ec = 1 for the exponent of c+ in Sc , the effective value is closer to 2
for poorly hydrated ionomers (small c+) but approaches 1 for well-hydrated
ionomers.

it does have an impact through the binary gas flow in the pores
and this is one reason for the variation. In some sense, adjust-
ing ec to make (32) hold is attempting to eliminate the impact
of proton concentration on the reaction. The mismatch is en-
hanced by the variation of the ionomer water content cm

w across
the layer and, therefore, a variation of c+.

This feature is again important when the CL is reduced to
an interface for modelling purposes. In summary, the depen-
dencies on the oxygen (Section 3.4) and proton concentrations
in the Butler–Volmer equation, expressed by Sc, can be ex-
pected to differ between a finite CL model and an interface
model.

3.7. Asymptotic ionomer water profile for vanishing and
infinite water uptake rates

Lastly, attention is drawn to the variation of the ionomer
water profile with the water uptake rate coefficient �am (or �am,
respectively). In the literature, this parameter is usually taken
to be infinite (Siegel et al., 2004). This means that the ionomer,
even under non-equilibrium (It �= 0) fuel cell conditions,
is at water sorption equilibrium, given by the isotherm (see
Section 2)

cm
w = c∗

w(�, cv). (33)

On the other hand, previous work by Berg et al. (2004) indicates
that the equilibrium might not hold. However, that research
was related to a unit cell model with a CL interface. Relating
those results to the mass transfer coefficient �am in this work,
which scales according to (9), is not a straightforward task.
Due to this uncertainty in the estimation of �am, we will study
the variation of this parameter to understand its impact on the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

x (PEM →  GDL)

γ
am

→ ∞

γ
am

→ 0

13,14 

1,2,3,4,5,6 

9 

10 

11 

c w
 [d

im
en

si
on

le
ss

]
m

Fig. 10. There is a limiting ionomer water profile as the water uptake
rate �am tends to ∞. However, while for small values of �am the no-flux
boundary condition �xcm

w(1)=0 is obviously met, large values of �am forces
cm
w to be near or at equilibrium in the interior. A boundary layer emerges

at x = 1 of width ∼ 1/
√

�am, where the equilibrium does not hold but
boundary conditions for both cm

w and cv can be met. Note: We vary �am

from 5 × 10−6 s−1 (case 1) to 5 × 107 s−1 (case 14), changing its value by
a factor of 10 between successive cases.

numerical results. We vary �am from 5 × 10−6 s−1 (case 1) to
5 × 107 s−1 (case 14), changing its value by a factor of 10
between successive cases.

Fig. 10 shows how different values for �am affect the ionomer
water profile. When �am → 0, the ionomer is effectively sealed
and all water produced in the reaction remain in the ionomer.
Hence, it must flow towards the PEM. Since the total current
is prescribed, this determines the ionomer water flow at the
CL–PEM interface. The water dynamics in the ionomer and the
pores decouple and a limiting shape of cm

w arises. The no-flux
boundary condition �xc

m
w(1) = 0 at the CL–GDL interface is

obviously fulfilled, as one looks at the graph. As �am grows,
this no-flux condition seems to be violated.

We also observe a limiting shape for �am → ∞. As shown
in Appendix C, a boundary layer of width ∼ 1/

√
�am emerges,

in which the no-flux conditions (for cm
w and cv , respectively)

at either end are still met. When �am is large, the ionomer
water content in the interior is near equilibrium, i.e., cm

w ≈ c∗
w.

It is strongly coupled to the vapour concentration cv in the
pores and ultimately, as �am → ∞, it is entirely given by the
local value of cv . The equilibrium holds everywhere except
in the boundary layers. The emergence of one boundary layer
for each concentration profile and the limiting shapes can be
observed in Figs. 10 and 11 as �am increases from small values
(1, 2, 3, 4, 5, 6) to larger values (9, 10). At very large values
(11, 12, 13, 14), the boundary layer is too small to be visible in
the plot. Note that �am is changed by one order of magnitude
from one curve to the next.

We have used a non-uniform mesh to resolve the bound-
ary layer. The boundary conditions are still met and there
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Fig. 11. The water vapour concentration with varying �am. A limiting profile
and a boundary layer (at x = 0) emerge as �am → ∞.

was no problem with respect to convergence. However,
standardized commercial CFD codes do not provide the op-
portunity to choose a finite �am. This leads to an arbitrarily
small boundary layer, in which the boundary conditions can
no longer be fulfilled and convergence issues might arise.
Hence, the choice of infinite water uptake rate is not only un-
physical but also causes major concerns during the numerical
implementation.

4. Conclusions

This paper discussed a macroscopic model of a cathode CL
in PEM fuel cells which describes the reaction–diffusion ki-
netics of this three-phase medium. The dynamics are governed
by a large nonlinear system of differential equations which
is very stiff. We presented a scaling and a numerical algo-
rithm for solving efficiently this PDE system (see appendices),
consisting of two imbedded Newton loops. The dynamics of
the layer were investigated both numerically and analytically
(asymptotically).

One key assumption was that the ionomer phase is not at
water sorption equilibrium under steady-state fuel cell opera-
tion, which affects mainly the water balance between ionomer
and pore within the layer. Water can both be adsorbed by
the ionomer and evaporate into the pore along the layer. An-
other major assumption was that hydronium plays the sole
role of ion transport within the ionomer. Governed by the
local ion-exchange equilibrium, hydronium can be driven
across the layer by the electric field against its concentration
gradient.

In addition, diffusive losses for oxygen transport between
pore and catalyst reaction sites lead naturally to maximum
currents and the “knee” shape of the polarization curve. The
maximum currents scale in a hyperbolic fashion with the trans-
port parameter associated with this oxygen diffusion process.

However, it does not exactly scale inverse proportional due to
variations in current and other variables across the layer. More-
over, this explicit transport loss further amplifies the effect of
maximum reaction rates near the GDL interface and a mono-
tonic decline towards the PEM.

A main focus of this paper was to check the validity of
the interface reduction, which is often used in large three-
dimensional fuel cell computations and treats the CL as an in-
terface. The results suggest that the interface reduction might
not hold over the whole range of realistic oxygen concentra-
tions or when liquid pore water is present. This is reflected by
large variations in the effective exchange current density with
operating conditions. This parameter takes the place of the ex-
change current density in the Butler–Volmer equation when the
CL is treated as interfaces. By definition, only a constant ef-
fective exchange current density would allow for a successful
interface reduction of the layer but its variation by one order
of magnitude suggests otherwise.

Moreover, in the limit of infinite water sorption rate of the
ionomer, a boundary layer emerges at either side of the CL,
in which the water sorption equilibrium is violated. The thick-
ness of this layer decreases with increasing water sorption rate.
When the mesh is not refined in this boundary layer, the bound-
ary conditions can no longer be met. This would explain why
some commercial codes could fail to converge when applied
to similar CL models using sorption isotherms. In addition,
for both vanishing and infinite water sorption rates, the wa-
ter profile in both the ionomer and the pore approach limiting
shapes.
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Appendix A. The scaled model

Because of the numerical challenges related to the model
with regard to its stiffness, a scaling of the model is necessary.
This appendix presents briefly the procedure.

System (1)–(14), (25) subject to boundary conditions (24)
has variables and physical constants varying over a large range
of values, which in general leads to numerical instabilities. The
system is transformed by scaling the space variable x and the
CL so as to render the independent variables dimensionless,
but keep the dependence of the equations on the dimensionless
CL thickness l, as defined below, explicit.

The scalings for 	pm, �am and � are motivated by the fact
that as l → 0, 	pm, �am must increase and � decrease, if the
given current given by (25) has to be driven. For simplicity we
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assume linear laws.
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From (15)–(23) and (A.1) it follows that
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Using the scalings (A.1) and (A.2), we can transform the gov-
erning equations contained within (1)–(14) as follows:
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ln(� + (�2 + 1))1/2) = E(1 − U + �). (A.10)

According to (25) and using the new variable x, the parameter
�0 is chosen such that

FRc

∫ 1

0
Sc dx = FRc

∫ 1

0

coc
ec+�

1 + R�
c c

ec+�
dx = It . (A.11)
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Eqs. (A.3)–(A.10) are equipped with the boundary condi-
tions (24) which in terms of dimensionless variables take the
form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cm
w(0) = 1

a
cm
w(0) given,

d

dx
cm
w(1) = 0,

�(0) = �0

E0
,

d

dx
�(1) = 0,

d

dx
�(0) = �l

(
�r

�∗
+ �

)
, � = �l0, �(1) = �r − �(l)

�∗
given,

d

dx
p(0) = 0, p(1) = pr − p(l)

p∗
given,

d

dx
cv(0) = 0, cv(1) = cv(l)

cr

given,

d

dx
co(0) = 0, co(1) = co(l)

cr

given,

d

dx
U(0) = 0, U(1) = U(l)

E0
given.

(A.12)

We will write the system of equations (A.3)–(A.12) in a more
compact form as follows.

First, the following assumptions are made to simplify Eqs.
(A.3)–(A.10). In (A.3)–(A.5), the variable � in the diffusion co-
efficient terms is replaced by �r . Moreover, in Eqs. (A.5)–(A.8)

the terms �∗/�r , p∗/pr are assumed to be small and approx-
imated by zero, the approximation 1+�(�∗/�r )

1+p(p∗/pr )
= c/cr = 1 is

made. Moreover, it is convenient to introduce the following
new parameters:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dm
w = dwe−2436/�r

l0�am

, rc = 3Rcl0

2a�am

,

D+ = a

Rc

d+
l2
0

e−1683/�r , D� = D+
FE0

R�r

,

r = �c
s�rRc

4�c�∗
l2
0 , � = 4

F�∗

�c
s�r

, p = Mo

Mv

Rcl0

4a�am

,

ur = p∗Kcr

a�am�

1

l0
= 1,

mv = Mv − Mn

Mv

, mo = Mo − Mn

Mv

, mn = Mn

Mv

,

Dv = Dvcr

a�am

1

l0
, Do = Docr

a�am

1
l0

,

	c = 	cE0

FRc

1

l2
0

, E = E0

�∗
.

(A.13)

Next, let us set v=(v1, . . . , v9)=(cm
w, �, �, p, cv, co, U, �, �0)

and according to Eqs. (A.3)–(A.11), we set

A(v) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dm
wcm

w 0 0 0 0 0 0 0 0

D+cm
w�cm

w
c+ D�cm

wc+ 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 mvcv + moco + mn 0 0 0 0 0

0 0 0 cv Dv 0 0 0 0

0 0 0 co 0 Do 0 0 0

0 0 0 0 0 0 	c 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

S(l, v) = S0 + lS1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0

ln(� + (�2 + 1)1/2) − E(1 − U + �)

FRc

∫ 1
0 Sc dx − It

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ l

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rcSc − Iw

−Sc

r (1 + � ln(� + (�2 + 1)1/2))Sc − Iw

−pSc + Iw

Iw

− rc

6
Sc

Sc

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For the boundary conditions (A.12), let I0, I1 be the 7 × 7
matrixes of zeros except I0(i, i) = 1, i = 3, . . . , 7, I1(i, i) = 1,
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i = 1, 2, and

b0(l, v) = b0
0(v) + lb0

1(v)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

a
cm
w(0) − cm

w(0)

�0

E0
− �(0)

0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ l

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0�r

�∗
+ �(0)

0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b1(v) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

�r − �(l)

�∗
− �(1)

pr − p(l)

p∗
− p(1)

cv(l)

cr

− cv(1)

co(l)

cr

co(1)

U(l)

E0
− U(1)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then Eqs. (A.3)–(A.12) are written as

− d

dx

(
A(v)

d

dx
v
)

= S(l, v) subject to (A.14)

d

dx
I0v(0) = b0(v),

d

dx
I1v(1) = b1(v). (A.15)

Appendix B. Numerical solution

As v9 =�0 defines a boundary condition for v2, the solution
of (A.14), (A.15) depends strongly on the parameter �0. The
numerical solution is split into two steps: for a given v9, find
v = (v1, . . . , v8), a solution of

L(v) := − d

dx

(
A(v)

d

dx
v

)
= −S(l, v) = 0, A ∈ R8×8,

A(i, j) = A(i, j), S ∈ R8, S(i) = S(i), (B.1)

d

dx
I0v(0) = b0(v),

d

dx
I1v(1) = b1(v), (B.2)

and, thereafter, update v9 for solving E(v) := FRc

∫ 1
0 Sc(v)

dx − It = 0. Thus, v = v(v9).
Let V = (v1, . . . , v8) be the space of functions satisfying

(B.2) (it is an affine space). Then, the problem is to find v9
such that

E(v) = 0 with L(v) = 0, v = v(v9) ∈ V. (B.3)

We use the following classical Newton’s method to solve nu-
merically problem (B.3):

(1) n = 0. Choose vn
9 .

(2) Update vn
9 using Newton’s method

vn+1
9 = vn

9 − E(vn)

�v9
E(vn)

= vn
9 − E(vn)

�vE(vn)(�v9
vn)

,

vn = v(vn
9 ). (B.4)

In order to evaluate (B.4), we need to compute:
(a) vn, which satisfies

L(vn) = 0, vn
2 (0) = vn

9 , vn ∈ V. (B.5)

As (B.5) is a nonlinear differential system of equations,
in practice we solve it approximately using Newton’s
method. For v9 = vn

9 , solve vn approximately by:
(a.1) m = 0. Choose vn,m.
(a.2) Update vn,m

vn,m+1 = vn,m − [�vL(vn,m)]−1L(vn,m),

v
n,m+1
2 (0) = vn

9 , vn,m+1 ∈ V. (B.6)

(a.3) If ‖vn,m+1 −vn,m‖ < �, take vn = vn,m and goto
(b); else goto (a.2).

(b) �vE(vn)(�v9
vn), which requires computation of

�v9
vn, a solution of the linear differential system of

equations

�vL(vn)(�v9
vn) = 0, subject to

d

dx
I0�v9

vn(0) = �v9
b0(vn)(�v9

vn),

d

dx
I1�v9

v(1) = �v9
b1(vn)(�v9

vn). (B.7)

The boundary conditions for �v9
vn are obtained from

(A.15), by differentiating both sides of the equations
with respect to v9 = �0.

(3) If |vn+1
9 − vn

9 | + |E(vn)| < � stop; else go to (1).

Remark B.1. In our numerical computations Eq. (B.6) is
solved approximately using a finite element method (Ciarlet,
2002). Let us first point out that (B.6) is equivalent to

�vL(vn,m)(�n,m) = −L(vn,m),

�n,m ∈ V, vn,m+1 = vn.m + �n,m. (B.8)

Several terms of L(vn,m) are nonlinear in terms of vn,m, so
an appropriate approximation Lh of L is considered instead.
Moreover, if {x0, . . . , xN } is a discretization of [0, 1] and �i ,
i = 0, . . . , N , are the usual hat functions, we look for �n,m

h ∈
Vh := V ∩ span{�1, . . . , �N }, solution of∫ 1

0
�vLh(v

n,m
h )(�n,m

h )�i = −
∫ 1

0
Lh(v

n,m
h )�i ,

and so v
n,m+1
h = v

n,m
h + �n,m

h .
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Fig. 12. Local reaction rate Sc with varying �am, corresponding to Figs. 10
and 11. The variation in all cases is smaller than 35% and assumed to be
constant for the boundary layer analysis.

Remark B.2. The system of differential equations (B.7) is lin-
ear; it is solved approximately using the finite element method.
At step n the approximation �v9

vn
h ∈ Vh of �v9

vn is a piece-
wise linear vector function satisfying

∫ 1

0
�vLh(v

n
h)(�v9

vn
h)�i = 0.

Appendix C. Water sorption equilibrium and boundary
layer analysis

In this appendix, we present a simplified toy model that
describes qualitatively the emergence of a boundary layer as
the deviation from water sorption equilibrium vanishes in the
interior of the layer. This corresponds to the limit of an infinitely
large water uptake rate, �am → ∞.

The deviation from the water sorption isotherm is expressed
by the term

Iw = cm
w − c∗

w. (C.1)

We assume to lowest order that temperature, pressure, and local
reaction rate (Fig. 12) are constant throughout the layer. We
consider now linear diffusion of ionomer water due to small
variation in cm

w and, therefore, Dw. We also choose a linear
water sorption isotherm

c∗
w = c∗

w(�, cv) = �cv , (C.2)

which is again justified by small variations of cv throughout
the layer and rescaling of cm

w . For our purposes, we set � = 1.
Also, cv is dominated by diffusion. This results in a toy model
with two equations for the ionomer water and pore vapour

concentrations. From (1), (11), they have the qualitative form
(I := 3Sc/2, w = cm

w , v = cv)

−Dwwxx = −�am(w − v) + I , (C.3)

−Dvvxx = �am(w − v). (C.4)

Division by Dw and Dv , respectively, followed by subtraction
yields

(w − v)xx = �(w − v) − I ∗ (C.5)

with

� = �am

(
1

Dw

+ 1

Dv

)
and I ∗ = I

Dw

. (C.6)

This can be solved easily and we obtain for the deviation from
sorption equilibrium, w − v,

w − v = A exp(
√

�x) + B exp(−√
�x) + I ∗

�
. (C.7)

The constants A and B are given by the boundary conditions at
x = 0 and l, respectively. Following the no-flux and Dirichlet
conditions of the model in this work, we find

w(0) = co
w, wx(l) = 0, (C.8)

vx(0) = 0, v(l) = co
v . (C.9)

We see that as �am → ∞, i.e., � → ∞, two boundary layers
form at either end of the layer, having thickness �bc = 1/

√
�.

They emerge because the system is forced increasingly closer
to equilibrium, i.e., I ∗/� → 0, in the interior while at the
boundary, a no-flux condition of one phase is faced by a non-
vanishing flux in the other phase.

Note that the water produced in the reaction in the interior
of the layer must flow out of the layer at steady state. Hence,
the boundary conditions can only be met simultaneously, if
the sorption equilibrium does not hold in the boundary layers.
Otherwise, we would find w ≡ v throughout the layer and
wx(l)=0 would imply vx(l)=0 and, likewise, vx(0)=0 would
imply wx(0)=0. This would contradict the production of water
in the interior which must flow out of the domain.
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