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Abstract Multicomponent bilayer structures arise as the ubiquitous plasma mem-
brane in cellular biology and as blends of amphiphilic copolymers used in electrolyte
membranes, drug delivery, and emulsion stabilization within the context of synthetic
chemistry. We present the multicomponent functionalized Cahn–Hilliard (mFCH)
free energy as a model which allows competition between bilayers with distinct
composition and between bilayers and higher codimensional structures, such as co-
dimension two filaments and co-dimension three micelles. We construct symmetric
and asymmetric homoclinic bilayer profiles via a billiard limit potential and show
that co-dimensional bifurcation is driven by the experimentally observed layer-by-
layer pearling mechanism. We investigate the stability and slow geometric evolution
of multicomponent bilayer interfaces within the context of an H−1 gradient flow of
the mFCH, addressing the impact of aspect ratio of the amphiphile (lipid or copoly-
mer unit) on the intrinsic curvature and the codimensional bifurcation. In particular
we derive a Canham–Helfrich sharp interface energy whose intrinsic curvature arises
through a Melnikov parameter associated to amphiphile aspect ratio.
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444 K. Promislow, Q. Wu

1 Introduction

Amphiphilic molecules, such as lipids and functionalized polymers, are central to
the self-assembly of intricately structured, solvent accessible nano-scaled morpholo-
gies and network structures. Indeed, Nafion, the generic ion separator in PEM fuel
cells is comprised of a hydrophobic flourocarbon polymer-backbone functionalized
by SO3H acidic side-chains. The result is a plastic-like ionomer that imbibes water
to achieve solvent-accessible surface areas on the order of 1000m2/gram, the highest
for any manufactured material (Knox and Voth 2010). By combining hydrophilic
and hydrophobic groups, this amphiphilic molecules, which we will refer to as
amphiphiles, serve as surfactants, lowering interfacial energy, often to negative values
(Zhu and Hayward 2008) and self-assembling into a wide range of network mor-
phologies that balance packing entropy against hydrophilicity. The resulting materials
have received extensive attention, for their wide applications to pharmaceutics, emul-
sion stabilization, detergent production and energy conversion devices (Alexandridis
and Lindman 2000; Ameduri 2009; Peet et al. 2009; Rubatat et al. 2004; Promislow
and Wetton 2009; Jain and Bates 2004; Laschewsky 2003; Li et al. 2004; Lutz and
Laschewsky 2005). Of course amphiphiles play a central role in cellular biology, par-
ticularly in plasma membranes. These complex multicomponent systems are highly
heterogeneous in the lipid distribution and composition, yielding clustering of particu-
lar lipids that is associated to intrinsic curvature of the membrane (Hanton et al. 2005;
Leventis and Grinstein 2010; Koldsø et al. 2014). Moreover, the interplay between
species of lipids is also critical to the structure of the endoplasmic reticulum (Maneta-
Peyret et al. 2014) membrane signaling and trafficking (Simons and Vaz 2004) and
has been proposed as a possible pathways to cell division in primitive single-celled
organisms (Budin and Szostak 2011) while cholesterol regulates influenza A fusion
in late endosomes by inducing negative spontaneous curvature (van Meer et al. 2008).

1.1 Multicomponent functionalized Cahn–Hilliard free energy

Many phase-field based models of cell membranes are based upon a “single-layer”
formulation (Wang and Du 2008; Lowengrub et al. 2009; Ryham et al. 2012), in
which a co-dimension one interface separates two solvent phases, with the inside and
the outside of the cell identified with a distinct phase field label. However many of
the fundamental properties of membranes arise from their bilayer nature, in which
an amphiphilic phase forms a two-sheeted co-dimension one interface that interpene-
trates and separates a single solvent phase. Bilayer models of membranes have several
advantages over single-layer models including a strong binding energy between the
constituent layers which affords a natural mechanism to modulate the bilayer width,
the possibility to perforate themembrane, or to reorganize into a higher co-dimensional
structure such as a filament or a micelle, see Fig. 1.

We propose themulticomponent functionalized Cahn–Hilliard (mFCH) free energy
as a model for the energy landscape of multicomponent blends of amphiphiles (par-
ticularly lipids). The mFCH free energy encompasses competition not only among
morphologies with distinct co-dimensions but also couples the rearrangement of
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amphiphiles on the surface of network structure to the stability and geometric evo-
lution of the underlying surface. This work focuses on co-dimension one interfaces,
and addresses the competition with higher co-dimensional morphologies through the
pearling bifurcations that lead to filamentation or budding into micelles. The mFCH
model is partially phenomenological, but incorporates the key elements of pack-
ing entropy and hydrophilicity in a transparent and mathematically elegant manner.
Indeed, lipids have typically been classified based upon their aspect ratios (Mouritsen
2011), with bilayers associated with an aspect ratio near one, and smaller values of the
aspect ratio associated with morphological bifurcations into filaments and micelles.
However lipid aspect ratio also leads to non-zero intrinsic curvature of bilayers when
the two sheets of the bilayer are formed of distinct mixtures.While the issues of intrin-
sic curvature and co-dimension bifurcation are both impacted by lipid aspect ratio, they
have typically been studied independently, see Mouritsen (2011) and Koldsø et al.
(2014) for example. It is fundamental that a model distinguish between conditions
under which an increase in aspect ratio of a lipid component would induce intrinsic
curvature and when it would lead the bilayer to bifurcate into a higher co-dimensional
structure, such as a filament or a micelle. The mFCH supports each of these distinct
phases in a compact continuum formulation.

The scalar functionalized Cahn–Hilliard (FCH) free energy is a well-studied model
formixtures of a single amphiphilic phasewith a solvent (Promislow andWetton 2009;
Gavish et al. 2011; Dai and Promislow 2013; Promislow and Yang 2014; Doelman
et al. 2014; Promislow and Wu 2015). The FCH corresponds to a special case of
the model proposed by Teubner and Strey (1987) and later Gompper and Schick
(1990); motivated by small-angle X-ray scattering (SAXS) data of micro-emulsions of
soapy-oil within water, they suggested a free energy for the soapy-oil volume fraction
u ∈ H2(�) in the form

FGS(u) =
∫
�

ε4
1

2
|�u|2 + ε2G1(u)�u + G2(u) dx, (1.1)

where the function G1 takes distinct values in the soapy-oil phase u ≈ 1 and the water
phase u = 0. The parameter ε > 0 scales homogeneously with space, and denotes the
ratio of the interfacial thickness to the size of the domain� ⊂ R

d , generically ε � 1.
This free energy includes a vast parameter space, and the functionalized Cahn–Hilliard
corresponds to a simplifying choice G1 = −W ′(u), for W a double-well potential
with unequal depth wells at u = 0 and u = b > 0 and G2 = 1

2 (W
′(u))2 − ε p P(u).

This form corresponds to a perturbation of a perfect square. Indeed, slightly redefining
W and P , see Promislow and Wu (2015) for details, this special case of the Gompper
and Schick free energy can be written as the FCH free energy

F(u) =
∫
�

1

2

(
ε2�u − W ′(u)

)2 − ε p
(
1

2
ε2η1|∇u|2 + P(u)

)
dx . (1.2)

The FCH admits a wide range of potential minimizers corresponding to bilayers,
filaments,micelles and their local defectswhich, to leading order, renders the dominant
quadratic term zero; that is, they solve
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446 K. Promislow, Q. Wu

ε2�u − W ′(u) = O(ε), (1.3)

where the double-well W is the mixing potential, encoding the dominant components
of the packing energy of the lipid-solvent mixture corresponding to the lipid vol-
ume fraction u. These solutions are asymptotically close to the critical points of the
corresponding Cahn–Hilliard type energy

E(u) =
∫
�

ε2

2
|∇u|2 + W (u) dx, (1.4)

and correspond to optimal packings of lipid structures. The functionalization terms
are perturbations of the dominant quadratic, with the values p = 1 and p = 2
corresponding to the strong and weak functionalizations respectively. In the strong
functionalization these terms dominate the O(ε2) Willmore residual in the quadratic
term, while for the weak functionalization the terms asymptotically balance. In both
cases the functional terms encode perturbative energy preferences among the opti-
mal structures defined in (1.3). For η1 > 0 the first functionalization term rewards
variation in u associated with the generation of co-dimension one interface or higher
codimension hyper-surfaces. This term encodes the strength of the hydrophilic-solvent
interaction. The second functionalization term, given by the potential P , is typically
taken in the simplified form P = η2W , incorporates energetic deviations among the
solutions of (1.3), assigning lower energies to morphologies residing in regions where
P > 0.

The scalar FCH free energy supports quasi-minimizing bilayer solutions that cor-
respond to finite-width versions of the co-dimension-one sharp interface, � immersed
in � ⊂ Rd . In the ε → 0 limit, the FCH evaluated at these bilayer solutions tends to
a Canham–Helfrich type limit (Canham 1970),

EHelfrich(�) :=
∫
�

c0(H(s) − c1)
2 + c2 + c3K (s) dS (1.5)

where H and K are the mean and Gaussian curvatures of �, with c0, c1, c2, and c3
denoting constants; in particular c1 is the intrinsic curvature, the value of the mean
curvature that corresponds to zero bending energy, see Gavish et al. (2011) and Fig. 1.
However for the scalar FCH, the bilayer must be symmetric about its midplane and the
intrinsic curvature, c1, is zero in the sharp interface limit. Non-zero intrinsic curvature
requires symmetry breaking, and a bilayer that is asymmetric about its midplane must
be composed of more than one type of amphiphilic species.

An investigation of the interaction between intrinsic curvature in bilayers and mor-
phological bifurcation, requires a multi-component extension of the FCH free energy
that encompasses a single solvent phase with N lipid species. Similar to the scalar
case, we introduce a vector-valued phase function u ∈ [H2(�)]N with the i’th compo-
nent denoting the local volume fraction of lipid type i = 1, . . . , N , and the associated
multi-component weak FCH free energy

FM (u) =
∫
�

1

2
|ε2�u−∇uW (u)+εV(u)|2−ε2

(
ε2

η1

2
|∇u|2 + η2W (u)

)
dx . (1.6)
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Fig. 1 (Left-panel) The initial and final structures of a plasma membrane from simulations (Koldsø
et al. 2014), composed of six types of lipids: POPC (light gray), POPE (red), POPS (blue), GM3
(magenta), Sph (green), PIP2 (yellow), and Cholestoral (cyan). The inner leaflet has initial composi-
tion POPC:POPE:Sph:GM3:Chol in ratios (40:10:15:10:25) while the outer leaflet had initial composition
POPC:POPE:POPS:PIP2:Chol in ratios (10:40:15:10:25). The system was relaxed for 5µs, and the top
image shows a snap-shot of the through-plane structure of the two leaflets, the middle image is a top down
view color-coded according to the deformation of the membrane along the normal direction, with GM3
lipids depicted in magenta and other lipids not shown. The bottom image relates the correlation between
lipid type and membrane curvature. Reprinted from Koldsø et al. (2014). PLoS Computational Biology
is an open access journal. (Right-panel-top) Mouritsen’s characterization of morphologies generated by
lipid-solvent mixtures based upon the aspect ratio, V/al, of the truncated cone of volume V , cap area a, and
length l, that best contains the hydrophobic (tail) component (Mouritsen 2011). In the mFCH free energy,
(6.3), the aspect ratio is incorporated into both the intrinsic curvature, via the non-solenoidal perturbationV,
and the selection of co-dimension through pearling bifurcationsmediated via the average value of P(u) over
the profile, with co-dimension 3 micelles correspond to small values of P , and increasing values leading to
co-dimension 2 filaments, and co-dimension 1 bilayers. The left half of the panel consists of three public
domain figures created byMariana Ruiz Villarreal and the right half is reprinted fromMouritsen (2011) with
permission from John Wiley and Sons. (Right-bottom) For LPC (Cohen and Melikyan 2004), the relation
between the aspect ratio of the hydrophobic cone, the intrinsic curvature, and the energy required to flatten
the layer. Reprinted from Cohen andMelikyan (2004) with permission from Springer (colour figure online)

For the derivation of the mFCH free energy from the multi-component Gommper–
Schick (mGS) free energy, see “Appendix”. An essential distinction between the FCH
and mFCH is that, vector-valued functions need not to be the gradient of a scalar
potential; consequently we consider the mFCH with a bulk potential of the form
∇uW (u) − εV, where the vector field V is non-solenoidal, that is ∇ × V 	= 0, and
hence is not the gradient of a scalar potential.
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448 K. Promislow, Q. Wu

The associated H−1 gradient flow of the weak mFCH free energy is the system

ut = �
δFM

δu
, (1.7)

subject to periodic boundary conditions on � ⊂ R
d , where the variational derivative

takes the form

δFM

δu
=
(
ε2� − ∇2

uW (u) + ε(∇uV(u))T
) (

ε2�u − ∇uW (u) + εV(u)
)

+ ε2
(
ε2η1�u − η2∇uW (u)

)
. (1.8)

The flow is local in space and conserves the ε-scaled total mass-vector

M(u) := 1

ε

∫
�

udx, (1.9)

of the N amphiphilic species. Sections 2 and 4 address the case of N ∈ N
+ while

Sect. 3 focuses on the case N = 2 for notational simplicity.

1.2 Quasi-bilayers

Our analysis addresses the construction, linear stability, and slow evolution of families
of quasi-minimizers: distributions u ∈ [H2(�)]N with sufficiently small free energy
and low lipid mass fraction, M see (1.9). More specifically, given a fixed constant
C > 0, the associated set of quasi-minimizers is given as

QC :=
{

u ∈ [H2(�)]N
∣∣∣∣ |M(u)| � C and FM (u) � Cε3

}
. (1.10)

The energy FM is bounded from below for fixed values of ε > 0, but can be negative,
see Promislow and Zhang (2013) for a discussion of lower bounds for the scalar FCH.

Candidates for quasi-minimizers are readily constructed from approximate solu-
tions of the stationary weak mFCH equation,

δFM

δu
= ε2m, (1.11)

where m ∈ R
N can be viewed as an ε2-scaled Lagrange multiplier associated to the

mass constraint imposed by the mFCH gradient flow.We focus our attention on a class
of quasi-minimizers called quasi-bilayers. These are constructed by fixing an admis-
sible co-dimension one base interface � immersed in�, changing to local coordinates
(z, s), where z is ε scaled distance to � and r(s) : S 
→ � is a parameterization of
�, see Definition 2.1 for details. Within the local variables the Laplacian takes the
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form (2.1), and the stationary Eq. (1.11) reduces at lowest order to the second order
dynamical system

∂2z φh − ∇uW (φh) = 0, (1.12)

subject to the condition that φh is homoclinic to zero. For special cases, the homoclinic
solution can be corrected to yield a higher-order approximation to (1.11), however the
solenoidal perturbation, εV is not such a case, and persistence of homoclinic solutions
under the solenoidal perturbation requires the introduction of a Melnikov parameter.
To account for the necessary degrees of freedom within the system, we introduce the
perturbed homoclinic 
h = 
h(z, ε; m), of the solenoidal ODE,

∂2z
h + εa∂z
h − ∇uW (
h) + εV(
h) = −ε2
[
∇2

uW (0)
]−1

m, (1.13)

where the mass constraint m is viewed as a parameter that prescribes the far-field
behavior


∞(ε; m) := lim
z→∞
h(z, ε; m) = ε2[∇2

uW (0)]−2m + O(ε3). (1.14)

Conversely the Melnikov parameter a is fixed by the choice of the homoclinic profile
φh and more significantly by V through the expansion

a = a0 + O(ε), a0 := −M−1
1

∫
R

V(φh(z)) · ∂zφh(z)dz, M1 :=
∫
R

|∂zφh(z)|2dz.
(1.15)

The quasi-bilayer profiles are the vector-valued smooth functions uq ∈ [H2(�)]N
obtained by the “dressing” of an admissible interface�, defined in Definition 2.1, with
the profile 
h(z, ε; m) via the relations

uq(x; ε,m, �)

=

⎧⎪⎨
⎪⎩

h(z(x), ε; m), x ∈ �l0 ,

(1 − χ(
ε|z(x)|

l0
))
∞(ε,m) + χ(

ε|z(x)|
l0

)
h,δ(z(x), ε; m), x ∈ �3l0\�l0 ,


∞(ε; m), x ∈ �\�3l0 ,

(1.16)

where the inner region �l0 is given in Definition 2.1, and χ : R → R is a smooth
cut-off function satisfying χ(r) = 1 for |r | � 1 and χ(r) = 0 for |r | � 3. The quasi-
bilayer profiles are parameterized by {m, �}, where m controls the far-field value and
� is an admissible co-dimension one immersion within � that specifies the bilayer
center-line. For fixed C, l0 > 0 we study the set of quasi-bilayers MC,l0(ε) defined
as

MC,l0(ε) := {uq(·; ε,m, �) ∈ C∞(�) | |m|
� C, � is an admissible interface with reach l0} . (1.17)
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1.3 Main results

In Sect. 2, we establish the persistence of homoclinic solutions under the solenoidal
perturbations and verify that each quasi-bilayer is a quasi-minimizer; that is,

MC,l0(ε) ⊂ QC ,

and moreover their free energy FM (uq) admits a Canham–Helfrich sharp interface
free energy at leading order. More specifically, introducing the notation

M :=
∫
R

φh(z)dz, B := [∇2
uW (0)]−2m, φh,1 := ∂ε
h |ε=0, (1.18)

which denote, respectively the mass per unit length of the bilayer φh , the leading-order
constant far-field value of 
h , and the O(ε)-order term in the expansion of 
h , we
establish the following Theorem.

Theorem 1 Subject to Assumption 2.2, the ODE (1.12) admits the first-order form

(
u
v

)
z
=
(

v
∇uW (u)

)
, (1.19)

for which the origin is a hyperbolic equilibrium whose stable and unstable manifolds
intersect transversely at (φh, φ′

h). For any C, l0 > 0 there exists ε0,C1 > 0 such that
for all ε ∈ (0, ε0) the family of quasi-bilayers MC,l0 is contained within the set of
quasi-minimizers QC1 and the mFCH evaluated at uq(m, �) ∈ MC,l0 reduces to a
Canham–Helfrich sharp interface energy on � of the form

FM (uq) = ε3
M1

2

∫
S

[
(H0(s) − a0)

2 − (η1 + η2)
]
dS + O(ε4), (1.20)

where H0 is the mean curvature of � and the intrinsic curvature a0 and constant M1
are defined in (1.15). Moreover the total ε-scaled mass takes the form

M(uq) = |�|M+ε

[
|�|B + |�|

∫
R

φh,1(z)dz +
∫
S
H0(s)dS

∫
R

zφh(z)dz

]
+O(ε2),

(1.21)

where M,B and φh,1 are defined in (1.18).
Section 3 is restricted to the case N = 2 and focuses on a class of regularized

Birkhoff billiard potentials for the mixing wells for which it is possible to construct
and explicitly characterize a large family of homoclinic solutions of the corresponding
Hamiltonian ODE (1.12). We denote the regularized Birkhoff-billiard potentials as
{Bδ(u)}, where δ > 0 is a smoothing parameter. The Birkhoff billiard potential B(u)
is piece-wise smooth,with a strict localminima at the origin and transitions to a positive
constant in a large region, and jumps discontinuously to a fixed negative value across a
‘collision-curve’, see the bottom row of images of Fig. 2. The Hamiltonian structure of
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Fig. 2 The top row depicts the physical domain � ⊂ R
3 with a bilayer (left), an AB-type bilayer (mid-

dle), and an ABA-type bilayer (right). The solvent phase is denoted by S and A and B denote species of
amphiphiles. The middle row depicts the density profile of the solute or solutes (phase A and B) along the
scaled normal direction, z, of the interface given by solutions of (6.5). The bottom row depicts the mixing
potential W as a function of u, with the superimposed dashed lines depicting the homoclinic orbits, φh .
The potentials are Birkhoff-billiard potentials, see Definition 3.1 and Fig. 5 in Sect. 3 for more details

(6.5) precludes the orbits homoclinic to the origin from entering the negative-W region
and thus they impact the discontinuity in a billiard-like collision. To each collision
we associate a “striation” within the corresponding co-dimension one interface, see
Fig. 2. Striations have been observed experimentally in blends of polymer blends of
A − B diblock with a B − C diblock (Zhu and Hayward 2008), with A representing
themost hydrophilic component andC themost hydrophobic. Thesemulticomponent,
di-block blends phase-separate into distinct striated structures which exhibit striation
localized pearling bifurcations, as depicted in the left panel of Fig. 3.

Within the context of a regularized-billiard potential Bδ(u),we show the existenceof
n-striation bilayers which are homoclinic to the origin, and characterize the spectrum
of the associated second variational derivative of FM . We emphasize that the term
bilayer refers to the dressing of a co-dimension one admissible interfacewith a solution

h of (1.13) that is asymptotically homoclinic to the origin. The n in the n-striation
refers to the number of distinct shifts in composition of the bilayer in the through-
plane direction. In particular the term striation is only meaningful when the mixing
potential W is a δ � 1 regularized Birkhoff billiard potential. For a given regularized
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452 K. Promislow, Q. Wu

Fig. 3 (Left) Distinct AB-type bi-layer filaments, formed from blends of PS9.5K −PEO5K with PS56K −
P2VP21K , exhibit a layer-by-layer pearling bifurcation into pearled P2VP cores. Reprinted with permission
from Zhu and Hayward (2008). Copyright 2008 American Chemical Society. (Center, Right) Numerical
simulations of the layer-by-layer pearling of an AB-type bilayer structure. More specifically, given N =
d = 2, � = [0, 2π ] × [0, 2π ], ε = 0.2, η1 = η2 = 1, V (u) = (−u2, u1)

T and the mixing well as a
regularized-billiard potential with δ = 0.2, the simulation of the weak mFCH gradient flow with the initial
data that is slightly above, equal to, and slightly below, the target value. The left panels show the physical
configurations of the pearled morphologies, where blue, red and green represent respectively the solvent,
amphiphile A and amphiphile B. In the right panels, the horizontal and vertical axis denote u1 and u2, the
volume fractions of amphiphile A and B, respectively; the background is the contour plot of −W (u) with
high values in yellow and low values in blue; the triangular traces depict the orbit of u parametrized by x1
for chosen fixed x2 along the white dotted lines in center panels. The code used in the numerical simulation
is developed by Brian Wetton (colour figure online)

Birkhoff-billiard potential, the second variational derivative of the mFCH free energy
(1.6) about an n-striation bilayer ψh,δ yields an operator L of the form

L := δ2FM

δu2 (ψh,δ) = (Lδ + ε2�s)
2 + O(ε), (1.22)

where�s is the Laplace–Beltrami operator associated to � and the structural operator
associated to ψh,δ

Lδ := ∂2z − ∇2
uBδ(ψh,δ), (1.23)

maps [H2(R)]2 to [L2(R)]2. As for the scalar FCH in the weak settings (Hayrapetyan
and Promislow 2014), the negative spectrum of L can only arise when the dominant
quadratic term is close to zero. Since the Laplace–Beltrami operator is non-positive,
negative spectrum occurs only for tensor product eigenfunctions with the leading order
form

� j,k(z, s) := ψ j (z)�k(s) + O(ε), (1.24)

whereψ j is an eigenfunctionofLδ associated to eigenvalueλ j � 0 and θk is aLaplace–
Beltrami eigenfunction with eigenvalue βk < 0 for which λ j + ε2βk = O(

√
ε).
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Rigorous statements about the pearling spectrum for the second variation, L, for the
scalar FCH free energy can be found in Hayrapetyan and Promislow (2014).

These tensor-product eigenmodes of L are the pearling eigenvalues, as their
high-frequency in-plane oscillation generates a pearled morphology, see Fig. 3 for
experimental observations and (Promislow and Wu 2015) for a rigorous construc-
tion of pearled morphologies for the scalar FCH. For δ sufficiently small we show
that Lδ associated to an n-collision homoclinic possesses precisely n large positive
eigenvalues of order O(δ−2) which may be enumerated so that for j = 1, . . . , n, the
corresponding j’th eigenfunction {ψ j }nj=1 is generically localized on the j-th stria-
tion, as corresponds to the experimentally observed striation-localized pearling. More
precisely, we establish the following theorem.

Theorem 2 Given a Birkhoff-billiard potential B(u) in the form Definition 3.1 for
which the leading-order ODE (1.12) admits a transversal n-collision homoclinic ψh;
see Assumptions 3.3 and 3.5. For sufficiently small δ > 0, the leading-order ODE
(1.12) with the regularized Birkhoff-billiard potential Bδ(u) given in Definition 3.7
admits a unique homoclinic continuation, ψh,δ . The associated linearized operator
Lδ defined in (1.23) has real spectrum σ(Lδ) ⊂ R, and admits precisely n “collision”
eigenvalues, {λ1(δ), · · · , λn(δ)}, of order O(δ−2). More precisely, there exists C0 >

0, δ0 > 0 and c(δ) : (0, δ0] → (0,C0] with limδ→0+ c(δ) = 0 so that for any
δ ∈ (0, δ0] and c ∈ (c(δ),C0],

σ(Lδ) ∩ {λ ∈ C | Re λ > cδ−2} = {λ1(δ), λ2(δ), · · · , λn(δ)}.

Moreover the collision eigenvalues may be labeled so that λ j (δ) admits the expansion

λ j = ν jδ
−2 + O(δ−1),

where ν j is the uniquepositive eigenvalue of the j-th collision operatorK j as defined in
(3.10). For the generic case when νi 	= ν j for i 	= j , thenLδ has n distinctive collision
eigenvalues, each of which is simple with the corresponding j’th eigenfunction ψ j

localized on the j-th collision interval K j (δ) as defined in (3.20). In addition, we
have

σess(Lδ) = (−∞,−2], 0 ∈ σpt (Lδ),

where, by Assumption 3.5, λ = 0 is simple with eigenspace spanned by the transla-
tional mode ∂zφh,δ .

In Sect. 4 we return to the case of general N and the general mixingwell,W , and use
a formal matched asymptotic expansion to show that the manifold of quasi-bilayers is
approximately forward invariant on the O(ε−2) time-scales, and derive the evolution
of the underlying interface � and background state m. Compared with the scalar case
(Dai and Promislow 2013), the novelty of this derivation lies in the following two
points. First, the mFCH equation preserves total mass, but the dressing of an interface
� with a bilayer profile specifies the total mass, to leading order, as a multiple of
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the vector-valued mass per unit area M(φh) ∈ R
N , see (1.18). Consequently, generic

initial data cannot converge to a quasi-bilayer profile if the mass of the initial data is
not properly tuned. This effect is manifest in Lemma 4.1, on the O(ε−1) time scale
for initial data which have an O(ε) mis-fit with the quasi-bilayer equilibrium—the
background state m starts at O(ε) but converges to O(ε2) on the faster time scale
only if the total mass is properly tuned. An analysis of pearling bifurcations for the
scalar case shows a sensitivity to the value of the far-field equilibrium, and this is
manifested in our numerical investigations, depicted in the right-two panels of Fig. 3.
For a mixture of two lipid types and a solvent, initial data that is off by O(ε) from
the target ratio corresponding to the bilayer leads to a pearling bifurcation in the inner
(respectively outer) layer of the bilayer depending upon the nature of the mis-match
between initial and target mass vectors. Lemma 4.1 shows that for initial composition
corresponding to amultiple of the bilayermass vector, the far-field equilibriumm tends
to O(ε2) on the fastO(ε−1) time-scale. Subsequently we enter a slow evolution on the
O(ε−2) time-scale corresponding to an area-preservingWillmore geometric flow,with
the far-field state algebraically slaved to enforce conservation of total mass of each
species. The second novelty resides in the appearance of the intrinsic curvature in the
Willmore formulation of the slow-time geometric flow. More specifically, noting that
the generalized mean curvature of the interface admits the expansion H(z, s, τ ; ε) =
H0 + εH1 + O(ε2) and introducing respectively the squared bilayer mass and the
curvature-weighted projection

M2 :=
∫
R

|φh(z)|2dz, ��( f ) := f − H0

∫
S f H0dS∫
S H

2
0 dS

, (1.25)

we use the method of multiple scales to establish the following formal result.

Formal Result 1 For small ε > 0, the method of matched asymptotics applied to
the H−1 gradient flow of the mFCH free energy shows that in the slow time scale
τ2 = ε2t , a quasi-bilayer uq associated to {m0, �0} evolves as a quasi-bilayer plus a
small perturbation, that is,

u(τ2, x, ε) = uq(x, ε; m(τ2), �(τ2)) + ε2up(τ2, x, ε), (1.26)

where ‖up‖L∞(�) = O(1) and ‖up‖L1(�) = O(ε). More importantly, the evolution
reduces to a surface-area-preserving Willmore flow of the interface �(τ2), that is, for
τ2 � 0, the total interfacial surface area |�(τ2)| equals the initial surface area |�0|
to leading order, and the leading order normal velocity Vn,0 satisfies

Vn,0(s, τ2) = M−1
2 M1��

[(
�s − 1

2
H0(H0 − a0) − H1

)
(H0 − a0)

]
, (1.27)

while the background state m(τ2) is slave to the Willmore flow via mass conservation
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m(τ2) · M = −M1

∫
S

[−|∇s H0|2 + η1+η2
2 H2

0 − 1
2H

2
0 (H0 − a0)2 − H1H0(H0 − a0)

]
dS∫

S H
2
0 dS

,

(1.28)

where the Melnikov parameter a0 and the bilayer parameter M1 are defined in (1.15),
the mass per unit length M is defined in (1.18) and the curvature-weighted projection
�� and squared bilayer mass M2 are defined in (1.25).

Finally, we break Assumption 2.2, and present a Birkhoff billiard potential for
which the stable and unstable manifolds associated the origin of (1.12) intersect non-
transversely. The result is a one-parameter family of homoclinics 
h(·; m; θ) which
are distinct up to translation, see Example3.4 and the right-most image in Fig. 5. The
corresponding linearized operators Lδ,θ possess a two-dimensional kernel spanned
by the translational eigenmode and ∂θ
h(·; m; θ). The higher order kernel suggests
a geometric evolution not only of the shape of the underlying interface, �, but also
a possibility for a continuous evolution of the composition of the underlying bilayer
profile, θ = θ(s, t) where s parameterizes position along the interface �. In such a
system the geometric and compositional evolution could couple, leading to a model
that couples geometric evolution with lipid composition, as depicted in the bottom-left
panel of Fig. 1.

2 Quasi-bilayers: a reduction to the Canham–Helfrich free energy

The construction of quasi-bilayer profiles starts with a rigorous definition of an admis-
sible interface�. Specifically, we assume the interface� is a smooth d−1 dimensional
manifold admitting a volume-preserving parameterization, �(s) : S ⊂ R

d−1 → �.
For every s ∈ S and l > 0, we can define a whisker ω(s, l) based at �(s), that is,

ω(s, l) :=
{
�(s) + εzn(s) | |z| � l

ε

}
,

where n(s) is the outward unit normal vector of the interface � at point �(s) and z is
the ε-scaled, signed distance to the interface �. We restricted ourselves to interfaces
far from self-intersections.

Definition 2.1 (Admissible interfaces with reach l0) An admissible interface � ⊂ R
d

is a smooth d − 1 dimensional manifold far from self-intersections. More precisely,
there exists l0 > 0 such that

(i) No two whiskers of length 6�0 intersect, that is, ω(s1, 3l0) ∩ ω(s2, 3l0) = ∅, for
any s1 	= s2 ∈ S.

(ii) For each l ∈ (0, 3l0] the set

�l :=
⋃
s∈S

ω(s, l),

is a neighborhood of the interface �.
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Fig. 4 In both panels, the blue rectangle represents the physical domain � of the amphiphilic mixture
while the light blue curve represents the interface � of the amphiphilic morphology. The left panel shows
an inadmissible interface where local whisker coordinates are not well-defined, due to the existence of
points (the red dot) where the curvature of the interface k is of order O(1/ε). The right panel depicts an
admissible interface �: Its length |�| is of order O(1) and its curvature is of order O(1) everywhere. For
such an interface, there exists a constant l0 > 0 such that the union of 6l0-long whiskers (red lines) form
a neighborhood of the interface, depicted as the annulus enclosed by light blue dash curves, denoted by
�l0 . In addition, no two distinct whiskers of length 6�0 intersect. For an admissible interface the whiskered
coordinates (z, s) give a smooth change of variables of �l0 , where z is the ε-scaled signed distance to the
interface and s is the tangential variable of the interface (colour figure online)

We call the set �l0 the inner region and the set �\�l0 the outer region, see Fig. 4.
In addition, we call (z, s) ∈ [− l0

ε
, l0
ε
] × S ⊂ R

d the local whisker coordinates. The
construction of the quasi-bilayer is based on a formal asymptotic analysis in the inner
and outer regions; see Fig. 4.

To construct quasi-bilayer solutions of the full PDE (1.11) within the inner region
�l0 , we derive an ODE system whose homoclinic solutions have sufficient flexibility
to approximate the full behavior of the reduction of the PDE to the whiskers. To begin,
we transform the stationary mFCH equation (1.11) to the local whiskered coordinates
(z, s). In the whiskered coordinated the Laplacian becomes

ε2� = ∂2z + εH(z, s)∂z + ε2�G , (2.1)

where at leading order the operator�G reduces to the Laplace–Beltrami operator and
H is the extended curvature of the expression,

H(z, s) = −
d−1∑
j=1

k j (s)

1 − εrk j (s)
. (2.2)

Here {k j (s)} is the set of principal curvatures of � at �(s); see Doelman et al.
(2014) for details about H and �G . We plug the Laplacian (2.1) into the stationary
mFCH equation (1.11), yielding,
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(
∂2z + εH(z, s)∂z + ε2�G − ∇2

uW (u) + ε(∇uV(u))T
)

(
∂2z u + εH(z, s)∂zu + ε2�Gu − ∇uW (u) + εV(u)

)

= ε2
[
η2∇uW (u) − η1(∂

2
z u + εH(z, s)∂zu + ε2�Gu) + m

]
, (2.3)

which, up to the leading order, reduces to the following ODE system

(∂2z − ∇2
uW (u))(∂2z u − ∇uW (u)) = 0.

As a starting point in our construction we make the following assumption.

Assumption 2.2 The leading-order Hamiltonian ODE system (1.12),

∂2z u − ∇uW (u) = 0,

admits, up to translations, an orbit φh that is homoclinic to the origin. Moreover, the
linearized operator

L0 := ∂2z − ∇2
uW (φh), (2.4)

admits 0 as a simple eigenvalue with the corresponding eigenspace spanned by φ′
h(z).

Remark 2.3 A homoclinic orbit satisfying the condition

∫
R

V(φh) · ∂zφhdz 	= 0. (2.5)

is called asymmetric as it cannot have a translate that is even about z = 0. We will
discuss potentials W which satisfy Assumption 2.2 in Sect. 3.

To develop approximate solutions of (2.3) we assume u is independent of s
and replacing the extended curvature H with a Melnikov parameter a, yielding the
whiskered ODE system,

⎧⎪⎨
⎪⎩

∂2z u + εa∂zu − ∇uW (u) + εV(u) = ε2v, (2.6a)

(∂2z + εa∂z − ∇2
uW (u) + ε(∇uV(u))T)v = η2∇uW (u) − η1(∂

2
z u + εa∂zu) + m.

(2.6b)

Assuming u(z) = φh(z) + O(ε) in (2.6), the leading order term of v, denoted ζh(z),
satisfies the equation,

L0ζh(z) = (η2 − η1)∇uW (φh(z)) + m. (2.7)

It is natural to assume ζh ⊥ ker(L0) = span {∂zφh} since the projection of ζh onto
the kernel of L0 corresponds to a translation of ζh in z. With this assumption we have

ζh := L−1
0,⊥ ((η2 − η1)∇uW (φh) + m) ,
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where L−1
0,⊥ is the bounded inverse of the operator L0 restricted to the orthogonal

complement of span {∂zφh} in (L2(R))N . Noting that ζh converges to a constant state
in infinity, that is,

lim
z→±∞ ζh(z) = −(∇2

uW (0))−1m := E

Substituting E for v in (2.6a), yields the whisker ODE system

∂2z u + εa∂zu − ∇uW (u) + εV(u) = ε2E, (2.8)

which incorporates the Melnikov parameter a and the far-field parameter E. We have
the following lemma, which is a special case of the more general Lemma 2.1 in
Homburg and Sandstede (2010). We provide a sketch of the proof for our simpler
case.

Lemma 2.4 Given Assumption 2.2 and any m ∈ R
N , for sufficiently small ε > 0,

there exists a unique choice of Melnikov parameter a(ε), in the form of (1.15), for
which the whisker ODE system (2.8), admits a homoclinic orbit


h(z; ε) = φh(z) + O(ε), (2.9)

connecting to the equilibrium


∞(ε) = ε2B + O(ε3),

where the leading-order background state is given by B = (∇2
uW (0))−2m.

Proof To start with, we rewrite the 2N -th-order ODE system (2.8) in first order form,
that is,

∂zU = F(U, a, ε), (2.10)

where U := (u, v) and

F =
(

v
∇uW (u) − εV(u) − εav + ε2E

)
.

For ε = 0, the ODE system (2.10) reduces to the leading order Hamiltonian ODE
(1.12) in its first order form

∂zU =
(

v
∇uW (u)

)
, (2.11)

which, according to Assumption 2.2, admits a homoclinic orbit, Uh(z) := (φh(z), ∂z
φh(z))T, connecting to the hyperbolic equilibrium0.Thepersistence of the background
equilibrium follows from the hyperbolicity of W at the origin; given any a ∈ R and
sufficiently small ε > 0, there exists a hyperbolic equilibrium U∞(a, ε) of the ODE
(2.10) with the expansion,

U∞(a, ε) =
(
ε2B + O(ε3)

0

)
.
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The persistence of the homoclinic solution Uh of the ODE (2.10) follows via the
Melnikov integral method. Linearizing (2.10) at U = Uh when ε = 0, yields the
system

∂zU(z) =
(

0 I2
∇2

uW (φh(z)) 0

)
U(z), (2.12)

with the corresponding adjoint ODE system

∂zŨ(z) = −
(
0 ∇2

uW (φh(z))
I2 0

)
Ũ(z), (2.13)

Denoting the stable and unstable manifold of the equilibrium U∞(a, ε) as
M s(U∞(a, ε)),M u(U∞(a, ε)) respectively, it is straightforward to see that

TUh(z)M
s(0) ∩ TUh(z)M

u(0) = span {∂zUh(z)},(
TUh(z)M

s(0) ⊕ TUh(z)M
u(0)
)⊥ = span {Uad(z)},

(2.14)

where Uad(z) = (−∂2z φh(z), ∂zφh(z)
)T
. Accordingly, we conclude that, for a small

open ballU centered at Uh(0) in the hyperplane Uh(0)+ ( span {∂zUh(0)})⊥, the two
N -dimensional manifolds,

U ∩
(
M s\u(0) ⊕ span {Uad(0)}

)
,

intersect transversally, forming a line, Uh(0) + span {Uad(0)}. Moreover, the
transversal intersection persists as we turn on the ε-perturbation, that is, for suf-
ficiently small ε, the manifolds U ∩ (M s(U∞(a, ε)) ⊕ span {Uad(0)}) and U ∩
(M u(U∞(a, ε)) ⊕ span {Uad(0)}) also intersection transversally, and hence there
exist two unique solutions Us(z; a, ε) defined on z ∈ [0,∞) and Uu(z; a, ε) defined
on z ∈ (−∞, 0] of the full system (2.10) such that

Uu(0; a, ε) − Us(0; a, ε) ∈ span {Uad(0)}.

The homoclinic orbit Uh persists if Us(0; a, ε) = Uu(0; a, ε) which in light of the
relation above is equivalent to the Melnikov condition

Uad(0) · [Uu(0; a, ε) − Us(0; a, ε)] = 0. (2.15)

The left-hand side of the Melnikov condition admits the Taylor expansion

Uad(0) · [Uu(0; a, ε) − Us(0; a, ε)]

=
[∫

R

Uad(z) · ∂εF(Uh(z), 0)dz

]
ε + O(ε2)

= −
[∫

R

∂zφh(z) · (V(φh(z)) + a∂zφh(z)
)
dz

]
ε + O(ε2),
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and solving for a yields the expression (1.15), and the persistence of the homoclinic
Uh follows. ��

Within the inner region �l0 , the quasi-bilayer profile uq equals 
h(z; ε), that is,

uq(x; ε) := 
h(z(x); ε) = φh(z(x))+ εφh,1(z(x))+ ε2φh,2(z(x))+O(ε3), (2.16)

where x ∈ �l0 and z ∈ [−l0/ε, l0/ε] and the error terms are comprised of smooth
perturbations which are O(ε3) in the L∞ norm. We plug the expansion (2.16) into
(2.8) and evaluate its terms of order ε and ε2, yielding respectively

{
φh,1 = −L−1

0,⊥(V(φh) + a0∂zφh),

φh,2 = L−1
0,⊥
(
ζh − a′(0)∂zφh − a0∂zφh,1 + 1

2∇3
uW (φh)(φh,1, φh,1) − ∇uV(φh)φh,1

)
.

From Lemma 2.4, in the inner region �l0 , there exists a constant c > 0 independent
of ε so that

ε2�uq − ∇uW (uq) + εV(uq) = (∂2z + εH(z, s)∂z)
h − ∇uW (
h) + εV(
h)

= ε(H(z, s) − a(ε))∂z
h + ε2E + O(ε3)

= ε(H0(s) − a0)∂zφh + ε2E + O(ε2e−c|z| + ε3),

and
1

2
ε2η1|∇uq |2 + η2W (uq) = 1

2
η1|∂z
h |2 + η2W (
h)

= 1

2
(η1 + η2)|∂zφh |2 + O(εe−c|z| + ε2),

where H(z, s) = H0(s)+εzH1(s)+O(ε2), all the error estimates are in the L∞ norm
and in the second estimate, we apply the fact that 1

2 |∂zφh |2 = W (φh) for all z ∈ R.
The Jacobian J of the change of coordinates from x into (z, s) admits the expansion

J (z, s) = ε + ε2zH0(s) + O(ε3); (2.17)

see the appendix of Hayrapetyan and Promislow (2014). Applying the two estimates
above, we evaluate the mFCH free energy evaluated at uq restricted to �l0 , obtaining
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FM,inner (uq) :=
∫
�l0

1

2
|ε2�uq − ∇uW (uq) + εV(uq)|2

− ε2
(
1

2
ε2η1|∇uq |2 + η2W (uq)

)
dx

= ε3
∫
S

∫ l0/ε

−l0/ε

[
1

2
|(H0(s) − a0)∂zφh + εE|2

−1

2
(η1 + η2)|∂zφh(z)|2

]
dzdS + O(ε4)

= 1

2
ε3M1

∫
S

[
(H0(s) − a0)

2 − (η1 + η2)
]
dS + O(ε4). (2.18)

In the last step, we use the fact that

∫
R

∂zφh(z) · Edz = 0,
∫ l0/ε

−l0/ε
e−czdz = O(1),

∫ l0/ε

−l0/ε
1dz = O(ε−1).

The total mass vector of amphiphiles within the inner region �l0 , denoted Minner ,
admits the expansion

Minner (uq) :=
∫
�l0

uqdx = ε

∫
S

∫ l0/ε

−l0/ε

h(z; ε)

(
1 + εzH0(s) + O(ε2)

)
dzdS

= ε

∫
S
1dS
∫ l0/ε

−l0/ε
(φh(z) + εφh,1(z) + ε2B)dz

+ε2
∫
S
H0(s)dS

∫
R

zφh(z)dz + O(ε3)

= ε|�|
∫
R

φh(z)dz + ε2
[
|�|
(
2l0B +

∫
R

φh,1(z)dz

)

+
∫
S
H0(s)dS

∫
R

zφh(z)dz

]
+ O(ε3), (2.19)

where we use the fact that the area of � and S are the same, i.e., |�| = |S|.
Within the outer region �\�l0 , the quasi-bilayer profile uq makes a smooth transi-

tion to the asymptotic state of 
∞(ε,m) as specified in (1.16). In particular for any
x ∈ �\�l0 we have the estimate,

uq(x) = 
∞(ε) + O(e−c/ε) = ε2B + O(ε3). (2.20)

With these estimates we find that the outer region contribution to the mFCH free
energy and the total mass vector of uq are, respectively,
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FM,outer (uq) :=
∫
�\�l0

1

2
|ε2�uq − ∇uW (uq) + εV(uq)|2

−ε2
(
1

2
ε2η1|∇uq |2 + η2W (uq)

)
dx

= (|�| − 2l0|�|)
[
1

2
| − ∇uW (
∞) + εV(
∞)|2

− ε2η2W (
∞)
]

+ O(e−c/ε)

= O(ε4),

Mouter (uq) :=
∫
�\�l0

uqdx = ε2(|�| − 2l0|�|)B + O(ε3). (2.21)

has mFCH free energy FM (uq) = FM,inner (uq) + FM,outer (uq) and ε-scaled total
mass vector M(uq) = 1

ε

(
Minner (uq) + Mouter (uq)

)
which admit the following

expansions

⎧⎪⎨
⎪⎩
FM (uq) = ε3 M1

2

∫
S

[
(H0(s) − a0)2 − (η1 + η2)

]
dS + O(ε4),

M(uq) = |�| ∫
R
φh(z)dz

+ ε
[|�|B + |�| ∫

R
φh,1(z)dz + ∫S H0(s)dS

∫
R
zφh(z)dz

]+ O(ε2).

These results establish Theorem 1.

3 Regularized-billiard potentials: existence of homoclinics

In this section, we restrict our attention to the case N = 2 and introduce the Birkhoff-
billiard potentials, B : R2 
→ R, and their regularized forms, denoted by {Bδ}, where
δ > 0 is a small free parameter independent of ε. We construct n-collision homoclinic
orbits, ψ , of the Birkhoff–Hamiltonian ODE

∂2z u − ∇uB(u) = 0, (3.1)

and demonstrate their persistence under the regularization, yielding a homoclinic solu-
tion ψδ of

∂2z u − ∇uBδ(u) = 0, (3.2)

that satisfies Assumption 2.2. We perform a spectral analysis of the associated lin-
earized operator

Lδ = ∂2z − ∇2
uBδ(ψδ), (3.3)

showing that each collision corresponding to a collision eigenvalue—a positive, order
of δ−2 eigenvalue of Lδ . While the essential spectrum of Lδ is uniformly in the left-
half complex plane, we give an example of a problem with hidden symmetries that
generate a non-trivial kernel, in addition to the translational symmetry of the orbit ψδ ,
which leads to novel center-stable modes other than the meandering mode.
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3.1 Singular Hamiltonian: homoclinics in a billiard limit potential

The Birkhoff-billiard potential is defined as follows.

Definition 3.1 A map B : R2 
→ R defined on the physical domain,

� := {u ∈ R
2 | u1 + u2 � 1, u1, u2 � 0},

is a Birkhoff billiard potential, if it satisfies the following conditions.

(i) There exists R0 ∈ (0, 1) such that the potential B(u) is radially symmetric in u
on the quadrant Q := {u ∈ � | |u| < R0}. In addition, there exists an integer
� � 2, a positive constant b+ and a strictly increasing C�+1-smooth function b(r)
defined on [0, R0] with

b(r) =
{
r2, r ∈ [0, R0/3],
b+, r = R0,

so that B(u) = b(|u|), for u ∈ Q.
(ii) The potential B(u) is piecewise constant on the billiard region B := �\Q.

More specifically, there exist two mutually disjoint simply connected open sets
B± ⊂ B withB = B+ ∪ B− such that

B(u) =
{
b+, u ∈ B+,
−b−, u ∈ B−.

(3.4)

In addition, the potential B(u) is C�+1-smooth in the simply connected domain
�\B− and the common boundary, called the collision curve, A := B+ ∩ B−
is C�+1-smooth with positive length. There also exists a neighborhood of A in
the physical domain �, denoted as N (A ), and a C�+1-smooth signed distance
function ρ(u) defined onN (A ) such that

ρ(u) |u∈B+∩N (A )> 0, ∇uρ(u) |u∈N (A ) 	= 0,

and the collision curve A is the zero level set of ρ(u), that is,

A ⊆ {u ∈ N (A ) | ρ(u) = 0}.

We study the leading-order Hamiltonian ODE system (3.1) which we rewrite as a
first-order system,

∂z

(
u
v

)
=
(

v
∇uB(u)

)
, (3.5)

with the Hamiltonian H(U) = 1
2 |v|2 − B(u) where U := (u, v)T. For clarity, we use

the term orbit for an orbit in the phase space and the term trajectory for the projection
of an orbit onto the u-plane. A point U = (u, v)T in the phase space is called an inner
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point if u ∈ B+ and a collision point if u ∈ A ∩ Bo. At the moment of a collision,
say z, the flow of (3.5) satisfies the reflection law, that is, the angle of incidence equals
the angle of reflection, or more precisely,

n · (v+(z) + v−(z)
) = 0, v+(z) − v−(z) = [n · (v+(z) + v−(z)

)]
n, (3.6)

where v±(z) := lim
s→z±

v(s) and n is the unit normal vector of the collision curveA at

point u(z).

Remark 3.2 The Birkhoff-billiard potentials have been studied when the collision
curveA is piecewise smooth, however the reflection law fails when the normal vector
is not well-defined. Such a collision is generically not well-defined unless the bil-
liard region B+ is a fundamental domain of a finite Coxeter group, see Kozlov and
Treshchëv (1991) for details.

Our assumption that the origin u = 0 is a strict local minimum point of B(u)
indicates that the origin is an equilibrium for the Hamiltonian ODE (3.5), admitting a
two dimensional stable manifold, M s(0), and a two dimensional unstable manifold,
M u(0). While M s(0) and M u(0) lie in the three dimensional invariant manifold
H0 := {U ∈ R

4 | H(U) = 0}, the conditions of Definition 3.1 are not sufficient to
conclude that the intersectionM s(0)∩M u(0) gives an orbit homoclinic to the origin.
We introduce two main assumptions–the existence and transversality of a homoclinic
orbit.

Assumption 3.3 (Existence of a homoclinic orbit) There exists n ∈ Z
+ and z1 <

z2 < · · · < zn such that the Hamiltonian system (3.5),

∂z

(
u
v

)
=
(

v
∇uB(u)

)
,

with a billiard potential B(u) admits an n-collision orbit homoclinic to the origin,
denoted by �h(z) = (ψh(z), ∂zψh(z)

)T, satisfying that
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n-collision : {z ∈ R | ψh(z) ∈ A } = {zi }ni=1 ⊂ Bo, (3.7a)

Piecewise-linearity : {ψh(z) | z ∈ (zi , zi+1)} ⊂ B+, i = 1, 2, . . . , n − 1,

(3.7b)

Non-tangency : ni · ∂zψh(zi ) 	= 0, i = 1, 2, . . . , n, (3.7c)

where ni is the unit normal vector ofA at the i-th collision point ci := ψh(zi ) for all
i . Without loss of generality, we set z1 = 0.

The condition (3.7a) implies that the homoclinic trajectory intersect the colli-
sion curve A precisely n distinct moments, but not necessarily n distinct points;
see Fig. 5. The condition (3.7b) requires the homoclinic orbit does not leave B+
between collisions, and hence the orbit is piecewise linear between collisions. The
condition (3.7c) guarantees that the collisions are not tangential: a tangential colli-
sion, ni · ∂zψh(zi ) = 0, leads to a degeneracy–a loss of the smoothness of the flow
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Fig. 5 In each panel, the triangle denotes the physical domain �, the potential is positive by smaller than
b+ in the faded blue region, the white region isB+, the cyan region isB−, the red dotted line in-between is
the collision curve,A , while the black dashed lines denote trajectories of a homoclinic orbit. The leftmost
panel gives a billiard potential. The middle two panels present a 2-collision homoclinic (middle left) and
a 3-collision homoclinic (middle right), both admitting two distinct collision points. The middle left panel
presents a billiard potential satisfying both Assumptions 3.3 and 3.5. The rightmost panel is a universal
billiard potential which admits a family of homoclinics parameterized by the angle θ . This potential shows
that symmetries other than translation may exist; see Example 3.4 for more details (colour figure online)

and a generic failure of the persistence of the homoclinic orbit with respect to pertur-
bations, see Rapoport et al. (2007) for details about degenerate collisions. Figure 5
presents two generic cases with direct physical interpretations: a 2-collision homo-
clinic orbit (middle left panel) corresponds to an asymmetric AB-type bilayer, and a
3-collision homoclinic with 2 distinct collision points (middle right panel) correspond-
ing to a symmetric ABA-type bilayer, where A and B are the phase of two distinctive
amphiphilies, see also Fig. 2.

Assumption 3.3 can be readily satisfied by a straightforward tuning of the collision
curve A , but not all homoclinics persist under smooth perturbations of the billiard
potential. The following is an important class of counterexample that admits a one
parameter family of co-existing homoclinics.

Example 3.4 (A universal Birkhoff-billiard potential) For any fixed c ∈ ( 12 ,
7
8 ], we

define the universal billiard potential,

�c(u) =

⎧⎪⎪⎨
⎪⎪⎩

|u|2, |u| � 1/4,
1
4 , u ∈

{
u ∈ � | |u| + 1√

2
|u1 − u2| � c, |u| > 1

2

}
,

− 1
4 , u ∈

{
u ∈ � | |u| + 1√

2
|u1 − u2| > c, |u| > 1

2

}
,

yielding, up to translation, a family of homoclinic orbits connecting the origin, param-
eterized by the angle θ of the homoclinic trajectory formed at the origin; see the
rightmost panel of Fig. 5. We anticipate the existence of a smoothing of the uni-
versal billiard potential, denoted as �c,δ which preserves a large part of the family
of homoclinics. As a result, the dimension of the kernel of the linearized operator
Lδ := ∂2z − ∇2

u�c,δ will be larger than one.

In order to guarantee the persistence of homoclinic orbits under smooth perturba-
tions of the potential, we impose the following transversality assumption.

Assumption 3.5 (Transversality of the homoclinic orbit) The homoclinic orbit �h

of the ODE (3.5) comprises the transversal intersection of the stable and unstable
manifold of the origin, that is, for all z ∈ R,
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T�h(z)M
s(0) ∩ T�h(z)M

u(0) = span {� ′
h(z)},

where TpM represents the tangential space of the point p in the manifold M .

Remark 3.6 The set of billiard potentials satisfying Assumptions 3.3 and 3.5 is not
empty. In fact, families of such potentials can be readily constructed by straightforward
ray-tracing: Given arbitrary two distinctive points c1, c2 ∈ �\{0}, we can tune the
boundary A according to the reflection law (3.6) so that the triangle with its vertex
c1, c2 and the origin is a unique trajectory of the ODE (3.5) that is homoclinic to the
origin; see the middle left panel of Fig. 5.

3.2 Nonsingular Hamiltonian: homoclinics in a regularized-billiard potential

The homoclinic orbit in the Birkhoff-billiard potential is singular in the sense that its
first derivative admits a jump at each collision due to the reflection law. Being con-
tinuous but not C�-smooth for any � > 0 makes linearization difficult. Consequently
we introduce the regularized Birkhoff-billiard potential, whose dynamics retains the
major features of non-smoothBirkhoff-billiard system. In this sub-sectionwe establish
the persistence of transverse homoclinic orbits under the regularization. The dynamics
away from the collision curveA are smooth and easy tomanipulate; the delicate part is
to smoothen the billiard potential near the boundaryA while qualitatively minimizing
the change of the dynamics nearby.

To introduce regularized-billiard potentials, we define a smooth jump function
χ̃δ(ρ) := (χ̃ ∗ hδ)(ρ), where

χ̃ (ρ) =
{
b+, ρ � 0,

−b−, ρ < 0.

and h is the classical mollifier with hδ(ρ) := δ−1h(δ−1ρ) for δ > 0. There exists
δ0 > 0 so that [−δ0, δ0] is part of the range of ρ. For any δ ∈ [−δ0, δ0], we introduce
the smooth region

Nδ(A ) := {u ∈ N (A ) | −δ � ρ(u) � δ}.

and the regularized Birkhoff-billiard potential and refer to Turaev and Rom-Kedar
(1998) and Rapoport et al. (2007) for a more general definition.

Definition 3.7 Given a billiard potential B(u) and any δ ∈ (0, δ0], the potential

Bδ(u) =
{
χ̃δ(ρ(u)), u ∈ Nδ(A ),

B(u), u /∈ Nδ(A ).
(3.8)

is a regularized-billiard potential with respect to the billiard potential B(u).
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Replacing the Birkhoff-billiard potential with the regularization yields a smooth
Hamiltonian system (

u̇
v̇

)
=
(

v
∇uBδ(u)

)
, (3.9)

with Hamiltonian H(U; δ) = 1
2 |v|2 − Bδ(u). By Definition 3.7, the origin is again a

hyperbolic equilibrium of the system (3.9) admitting a two-dimensional stable mani-
fold, M s(0; δ), and a two-dimensional unstable manifold, M u(0; δ). We claim that,
for sufficiently small δ, transverse homoclinic orbits in the limit billiard system (3.5)
persist as solutions of (3.9).

Proposition 3.8 Given a Birkhoff billiard potential B(u) for which the ODE (3.5),
admits an n-collision homoclinic �h = (ψh, ∂zψh)

T satisfying Assumptions 3.3 and
3.5, then for any sufficiently small δ > 0, the regularized-billiard Hamiltonian system
(3.9), admits a locally unique orbit �h,δ = (ψh,δ, ∂zψh,δ)

T homoclinic to zero for
which

lim
δ→0+ ‖�h,δ(z) − �h(z)‖L∞ = 0. (3.10)

To prove the proposition, we recall a Lemma, which states that restricted to inner
points, the smooth regularized-billiard flow, denoted as fδ(z,U), converges to the
Birkhoff-billiard flow, denoted by f(z,U), in the C�-topology, as δ → 0+. We use
the notation f0(z,U) = f(z,U) where convenient.

Lemma 3.9 (Turaev and Rom-Kedar 1998) For any inner point U1 and any z > 0 so
thatU2 := f(z,U1) is also an inner point, there exists a neighborhood ofU1\2, denoted
asN (U1\2), and an interval containing z, denoted as I , so that, for sufficiently small
δ > 0,

‖fδ − f‖C�(I×N (U1),N (U2))
= O(δ). (3.11)

We refer to Turaev and Rom-Kedar (1998) for the proof of Lemma 3.9 and give the
proof of Proposition 3.8 as follows.

Proof The idea is to show that the transversality stated in the Assumption 3.5 still
holds for the regularized-billiard system (3.9) for δ small. We only prove the case
when n = 2. The general proof for n ∈ Z

+ is quite similar and thus omitted.
The unperturbed ODE (3.5) is Hamiltonian and thus admitsH0 = {u | H(u) = 0}

as a three dimensional invariant manifold. For small ξ > 0, the set

S (ξ) := {U ∈ H0 | u ∈ A , |U − �h,+(z2)| < ξ},

where �h,+(z2) := limz→z2+ �h(z), provides a two dimensional cross section of �h

in H0. However, the set S (ξ) has a drawback: As we perturb δ away from 0, the
intersectionsS (ξ)∩M s\u(0; δ) can be empty. Instead, we take a cross section close
toS (ξ), which accommodates the persistence of the intersection. We choose z0 > 0
so small that {ψh(z) | z ∈ [−z0, z2 + z0]\{0, z2}} ⊂ B+ and the set

S2(ξ) := z0(∂zψh(z2 + z0), 0)
T + S (ξ),
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is a translation of S (ξ) centered at �h(z2 + z0), admitting the same transversal
property as S (ξ). As a result, we take ξ so small that S2(ξ) ∩ M s\u(0) is a
C�-smooth curve, denoted as Gs\u(y), y ∈ Y ⊂ R. From Assumption 3.5 it is true
that �h(z2 + z0) is the only intersection point of two curves Gs and Gu . Without
loss of generality, we assume Gs(0) = Gu(0) = �h(z2 + z0). Most importantly, the
intersection is transversal, or equivalently, G′

s(0) and G′
u(0) are linearly independent.

Since {ψh(z) | z > z2} ∩ A = ∅, for sufficiently small δ, we can parameterize
M s(0; δ) ∩ S2(ξ) by Gs,δ(t), t ∈ T . Moreover, we have

‖Gs,δ − Gs‖(C�(T ))4 = O(δ). (3.12)

In order to describe M u(0; δ) ∩ S2(ξ), we introduce a family of Poincaré maps to
control the flow near the collision curve. Close to the first collision point, we take a
two dimensional cross section centered at �h(−z0),

S1(ξ̃ ) := {U ∈ H0 | [U − �h(−z0)
] · (∂zψh(−z0), 0)

T = 0, |U − �h(−z0)| < ξ̃},

where ξ̃ is sufficiently small so that the C�-smooth Poincaré map

� : S1(ξ̃ ) −→ S2(ξ)

U 
−→ f(Z(U),U),
(3.13)

is well defined with �(S1(ξ̃ )) ⊂ (S2(ξ))
o. Here Z(U) > 0 is the C�-smooth time

of first arrival at S2(ξ). Based on Lemma 3.9 and the definition of �, there exists
δ̃0 ∈ (0, δ0) so that, for any δ ∈ [0, δ̃0], the Poincaré map

�δ : S1(ξ̃ ) −→ S2(ξ)

U 
−→ fδ(Zδ(U),U),
(3.14)

is well-defined with�δ(S1(ξ̃ )) ⊂ (S2(ξ))
o. We now define G̃u(y) := �−1(Gu(y))

and thus there exists an interval Ỹ ⊆ Y such that the C�-smooth curve G̃u(y), y ∈ Ỹ ,
is the intersectionWu(0) ∩ S1(ξ̃ ). Similarly to the case ofWs(0; δ), for sufficiently
small δ, the intersection Wu(0; δ) ∩ S1 can be parameterized by G̃u,δ(y), y ∈ Ỹ .
Moreover, we have

‖G̃u,δ − G̃u‖(C�(Ỹ ))4 = O(δ). (3.15)

It is now straightforward to see that Gu,δ(y) := �δ(G̃u,δ(y)) is the parameterization
of Wu(0; δ) in �δ(S1(ξ̃ )) ⊂ S2(ξ). Furthermore, we have

‖Gu,δ − Gu‖(C�(Ỹ ))4 = ‖�δ(G̃u,δ) − �(G̃u)‖(C�(Ỹ ))4

� ‖�δ(G̃u,δ) − �(G̃u,δ)‖(C�(Ỹ ))4

+ ‖�(G̃u,δ) − �(G̃u)‖(C�(Ỹ ))4 . (3.16)

From Lemma 3.9 it is known that the first term on the right side in (3.16) is of order
O(δ)while the estimate (3.15) indicates that the second term on the right side in (3.16)
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is also of order O(δ). As a result, we have

‖Gu,δ − Gu‖(C�(Ỹ ))4 = O(δ). (3.17)

Combining the estimates (3.12) and (3.17), we conclude that, for sufficiently small
δ > 0, the manifolds S1(ξ) ∩ M s\u(0, δ) intersect transversally at a point. This
intersection point corresponds to a homoclinic orbit, denoted as �h,δ , converging to
�h as δ goes to zero. ��

3.3 Spectral analysis of the linearization: the origin and the collisions

In this sub-section, we analyze the eigenvalue problem associated to the linearization
of the regularized Birkhoff-Billiard homoclinics established in Proposition3.8. More
specifically, for ψh,δ the homoclinic associated to the regularized Birkhoff-potential
Bδ , then the corresponding linearization (1.23) takes the form

Lδ := ∂2z − Hδ(z),

where Hδ(z) := ∇2
uBδ(ψh,δ(z)) is the Hessian of Bδ(u) with respect to u at ψh,δ(z).

The spectrum, σ(Lδ), plays an important role in associated pearling stability of the cor-
responding quasi-bilayers uq obtained by dressing admissible interfaces with�h,δ(z).
The operator Lδ is closed for δ > 0 but not well-defined for δ = 0. For small δ > 0,
we localize the spectrum of the operator Lδ , which consists of the essential spectrum
σess(Lδ) and the point spectrum σpt (Lδ).

By the Weyl essential spectrum theorem, see Kapitula and Promislow (2013) and
Kato (1976); Reed and Simon (1978), the essential spectrumofσess(Lδ), is determined
by the behavior of Bδ(u) near the origin u = 0. Since as z → ±∞, the symmetric
matrix Hδ(z) limits to the constant matrix ∇2

uB(0) = 2I2, independent of the choice
of δ, we introduce the asymptotic operator associated with Lδ ,

L∞ : (H2(R))2 −→ (L2(R))2

w 
−→ ∂2z w − 2w.
(3.18)

It follows that Lδ − L∞ is a compact operator and from the Weyl essential spectrum
theorem the two operators share the same essential spectrum,

σess(Lδ) = σess(L∞) = (−∞,−2]. (3.19)

The point spectrum of a linear operator is in general more difficult to localize than
its essential spectrum; see Kapitula and Promislow (2013). Instead of an exhaustive
description of the point spectrum σpt(Lδ), we characterize the eigenvalues arising from
collisions, which correspond to the largest eigenvalues in the limit δ → 0+.

We start by defining the collision times of perturbed homoclinics. For a perturbed
homoclinic trajectory ψh,δ arising from the unperturbed n-collision homoclinic tra-
jectory ψh as in Proposition 3.8, the set of collision times of the homoclinic ψh,δ are
defined as
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Fig. 6 The top and bottom panel are respectively cartoon sketches of the profiles |Hδ | and |H̃δ |

{z ∈ R | ∂zρ(ψh,δ(z)) = 0, ψh,δ(z) ∈ Nδ(A )}.

This set admits n elements, denoted as {zi,δ}ni=1. For simplicity, we assume z1,δ =
0 < · · · < zn,δ . For a collision time zi,δ , the point ci,δ := ψh,δ(zi,δ) is the collision
point and there is a collision interval Ki (δ) such that zi,δ ∈ Ki (δ) and

n⋃
i=1

Ki (δ) = {z ∈ R | ψh,δ(z) ∈ Nδ(A )}. (3.20)

By definition, we have limδ→0+ zi,δ = zi and limδ→0+ ci,δ = ci , where {zi } and {ci }
are collision times and points of the unperturbed homoclinic ψh .

To decompose the operator Lδ into a sum of collision operators and asymptotic
operators, we chop the real line into 2n + 3 intervals; see the top panel of Fig. 6 for
an illustration of the case n = 2. More specifically, we define

{
Z−(δ) := inf{z | ψh,δ(s) ∈ B+, s ∈ [z,min{K1(δ}]},
Z+(δ) := sup{z | ψh,δ(s) ∈ B+, s ∈ [max{Kn(δ)}, z]},

and

K− := (−∞, Z−], J0 := (Z−,min K1), Ji := (max Ki ,min Ki+1),

Jn := (max Kn, Z+), K+ := [Z+,+∞),

where i = 1, . . . , n − 1. As a result, we have

R =
(

n⋃
i=1

Ki (δ)

)
∪
(⋃
i=±

Ki (δ)

)
∪
(
n+1⋃
i=0

Ji (δ)

)
. (3.21)

Moreover, the length of every Ji is of order O(1). As for the length of Ki , by Propo-
sition 3.8, we conclude that, for sufficiently small δ > 0,

∫
z∈K1\2(δ) |∂zψh,δ(z)|dz =

O(δ) and minz∈K1\2(δ) |∂zψh,δ(z)| = O(1), yielding
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|Ki | = O(δ), i = 1, . . . , n. (3.22)

Let {κi (z)}ni=±,1 be a partition of unity of the real line such that

{∑n
i=±,1 κi (z) = 1, z ∈ R,

κi (z) = 1, z ∈ Ki (δ), i = 1, . . . , n,±.
(3.23)

Using such a partition of unity, we define

Ki,δ := κiLδ, A±,δ := κ±Lδ. (3.24)

and call Ki,δ the i-th collision operator and A±,δ the positive\negative asymptotic
operator. As a result, we have the decomposition

Lδ = A−,δ + A+,δ +
n∑

i=1

Ki,δ. (3.25)

In the remainder of this section, we show that for small δ > 0, each collision
operator admits a positive eigenvalue which persists in the whole linearized operator
Lδ . To start, we take a close look at Hδ(z). A straightforward calculation shows that

Hδ(z) =

⎧⎪⎨
⎪⎩
H1(z; δ)[∇uρ(ψh,δ(z))]T∇uρ(ψh,δ(z)) + H2(z; δ)∇2

uρ(ψh,δ(z)), z ∈⋃n
i=1 Ki (δ),

∇2
uW (ψh,δ(z)), z ∈ K−(δ) ∪ K+(δ),

0, z ∈⋃n
i=0 Ji (δ),

(3.26)
where

H1(z; δ) := (b− + b+)h′
δ(ρ(ψh,δ(z))) = O(δ−2),

H2(z; δ) := (b− + b+)hδ(ρ(ψh,δ(z))) = O(δ−1).

SinceHδ = O(δ−2) on theO(δ)-long intervals Ki (δ), there is no obviouswell-defined
limits for Lδ and Ki,δ as δ goes to zero. Applying a rescaling z = δz̃ and a δ2 scaling
to Lδ , we define a rescaled linearized operator

L̃δ : (H2(R))2 −→ (L2(R))2

w(z̃) 
−→ ∂2z̃ w(z̃) − H̃δ(z̃)w(z̃),
(3.27)

where H̃δ(z̃) := δ2Hδ(δz̃); see the bottom panel in Fig. 6 for a scalar description. The
sets σpt (L̃δ) and σpt (Lδ) are related by the map

σpt (Lδ) = δ−2σpt (L̃δ). (3.28)
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More specifically, given Lδu(z) = λu(z), we have L̃δu(δz̃) = δ2λu(δz̃). Similarly,
we define rescaled collision operators and rescaled asymptotic operators, respectively,

K̃i,δ(z̃) := κi (δz̃)L̃δ, Ã±,δ(z̃) := κ±(δz̃)L̃δ,

for which the equality L̃δ =∑n
i=1 K̃i,δ +∑ j=± Ã j,δ holds. More importantly, every

rescaled collision operator K̃i,δ , up to the scaled translation z̃ 
→ z̃ − δ−1zi,δ , admits
a well-defined limit as δ goes to zero. In fact, we define the limit collision operators
as follows.

Definition 3.10 The i-th limit collision operator, denoted as Ki , is defined as

Ki : (H2(R))2 −→ (L2(R))2

w(z̃) 
−→ (
∂2z̃ − (b+ + b−)h′(Zi |z̃|)∇uρ(ci )[∇uρ(ci )]T

)
w(z̃),

(3.29)

where Zi := vi · ∇uρ(ci ), vi := (limz→zi+ ∂zψh(z) − limz→zi− ∂zψh(z))/2, and
i = 1, . . . , n.

We now have the following lemmas.

Lemma 3.11 For small δ > 0 and any i = 1, . . . , n, we have

lim
δ→0+ ‖Ti,δ ◦ K̃i,δ − Ki (z̃)‖B([H2(R)]2,[L2(R)]2) = 0,

where (Ti,δw)(z̃) := w(z̃ + δ−1zi,δ) for any w ∈ (L2(R))2. Moreover, the limit
collision operator Ki admits a unique positive eigenvalue, denoted νi , that is,

σ(Ki ) ∩ {ν ∈ C | Re ν > 0} = {νi }.

Meanwhile, for small δ > 0, there exists 0 < νi,δ ∈ σpt (K̃i,δ) such that νi =
limδ→0+ νi,δ and νi,δ is the unique positive eigenvalue of K̃i,δ with order O(1).

Proof We prove the result for the scaled first-collision operator and omit the rest. The
truncated first-collision Hessian H̃1,δ(z̃) := κ1,δ(δz̃)H̃δ(z̃) admits the expression

H̃1,δ(z̃) =
{
δ2Hδ(δz̃), z̃ ∈ δ−1K1,δ,

0, z̃ /∈ δ−1K1,δ,
(3.30)

Applying the rescalings ρ = δρ̃ and u = c1,δ + δũ to the rescaled level-set function
ρ̃(ũ) := δ−1ρ(c1,δ + δũ), we have that, for ψ̃h,δ(z̃) := δ−1(ψh,δ(δz̃) − c1,δ) and
z̃ ∈ δ−1K1,δ ,

⎧⎪⎨
⎪⎩

∇uρ(ψh,δ(z)) = ∇ũρ̃(ψ̃h,δ(z̃)) = ∇uρ(c1) + O(δ),

ρ̃(ψ̃h,δ(z̃)) = Z1|z̃| + O(δ),

δ2h′
δ(ρ(ψh,δ(z))) = h′(ρ̃(ψ̃h,δ(z̃))) = h′(Z1|z̃|) + O(δ).

(3.31)
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Inserting the expansion (3.31) and the expression (3.26) into (3.30), we obtain

lim
δ→0+ H̃1,δ(z̃) = (b+ + b−)h′(Z1|z̃|)∇uρ(c1)[∇uρ(c1)]T,

implying that limδ→0+ K1,δ = K1.
We are left to show that K1 admits a positive eigenvalue. Defining

n1 := ∇uρ(c1)
‖∇uρ(c1)‖ , t1 := limz→0+ ∂zψh(z) + limz→0− ∂zψh(z)

‖ limr→0+ ∂zψh(z) + limr→0− ∂zψh(z)‖ , N1 := (n1 t1
)
,

we apply the change of coordinates w = N1w̃ to the operator K̃1,δ to find

D1,δ := N−1
1 ◦ K̃1,δ ◦ N1 =

(
∂2z̃ − (b+ + b−)h′(Z1 z̃) 0

0 ∂2z̃

)
.

We note that

(
∂2z̃ − (b+ + b−)h′(Z1 z̃)

)
w̃0(z̃) = 0,

where w̃0(z̃) := limδ→0+ n1 · ∂zψh,δ(δz̃) is an increasing function with w̃0(0) = 0.
By Sturm-Louville theory, the operator ∂2z̃ − (b+ + b−)h′(Z1 z̃), and thus, K1, admits

one and only one positive eigenvalue ν1. The continuation of ν1 in K̃1,δ is a simple
classical perturbation argument (Kato 1976), which concludes the proof. ��
Lemma 3.12 For small δ > 0, the asymptotic operators Ã±,δ have no O(1) positive
eigenvalues,

σpt (Ã±,δ) ∩ {ν ∈ R
+ | ν = O(1)} = ∅.

Proof We argue by contradiction to show that

σpt (A−,δ) ∩ {ν ∈ R
+ | ν = O(δ−2)} = ∅.

The proof for the operator A+,δ is essentially the same and thus omitted. Due to
the radial symmetry of B(u) near the origin, there exist α(δ) ∈ [0, π/2] so that the
closure of the trajectory {ψh,δ(z) | z ∈ K−} is a line segment through the origin
whose angle with respect to u1-axis in the u-plane is α. Consequently, denoting t− :=
(cos(α), sin(α))T, r(z; δ) := |ψh,δ(z)| and Zm(δ) := {z ∈ K− | r(z) = R0/2}, we
have

H−,δ(z) =

⎧⎪⎨
⎪⎩
2I2, z ∈ (−∞, Zm),

(b′′(r(z)) − b′(r(z))/r(z))t−tT− + b′(r(z))/r(z)I2, z ∈ [Zm, Z−],
0, z ∈ [Z−,∞).

(3.32)
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We denote the 2 × 2 rotation matrix with angle α as N− and apply the change of
coordinates w = N−w̃ to the operator A−,δ , yielding

D−,δ := N−1− ◦ A−,δ ◦ N− =
(
∂2z − b1(z) 0

0 ∂2z − b2(z)

)
,

where

b1(z) =

⎧⎪⎨
⎪⎩
2, z ∈ (−∞, Zm),

b′′(r(z)), z ∈ [Zm, Z−],
0, z ∈ [Z−,∞),

b2(z) =

⎧⎪⎨
⎪⎩
2, z ∈ (−∞, Zm),

b′(r(z))/r(z), z ∈ [Zm, Z−],
0, z ∈ [Z−,∞).

Assume that there exists a positive constant ν = O(1) so that δ−2ν ∈ σpt (∂
2
z − b1(z))

with an eigenfunction u(z) ∈ L2(R), that is, ∂2z u(z) − b1(z)u(z) = δ−2νu(z). It is

then straightforward to see that the angle function, β(z) := u(z)
∂zu(z)

, solves the following
second order ODE problem

{
∂zβ = (δ−2ν + b1(z)) − β2, (3.33a)

β(Zm) =
√
δ−2ν + 2, β(Z−) = −δ−1√ν, (3.33b)

which is impossible for sufficiently small δ. The reason is quite simple: since b1 =
O(1) for all z ∈ R, we have ∂zβ � 1 when β = 0, which implies that any forward
solution of the ODE (3.33a) with positive initial condition will stay positive for all
forward time. A similar argument also applies to the operator ∂2z − b2(z). Therefore,
the operatorD−,δ , thusA−,δ , does not admit any positive eigenvalue of orderO(δ−2),
which concludes the proof. ��
Remark 3.13 The reduction to the angle function β is possible only for N = 2, and
in fact is the “Prüfer transformation” that forms the basis of the classical Sturmian
theory (Reid 1988). The extension to N � 2 requires the use of the Jost matrices of
each of the collision operators to expand the Evans function of the full operator, up to
exponential corrections, as the product of the Evans functions of the collision operators
for the range of λ under consideration. The associated branch point structure of the
Jost matrices complicates, but does not fundamentally alter, the nature of the proof,
see chapter 10 of Kapitula and Promislow (2013) for details on the Jost matrices.

Having established Lemmas 3.11 and 3.12, we are ready to prove the main theorem
of this section.

Proof of Theorem 2 It remains to prove the statements about the collision eigenvalues.
Without loss of generality, we consider only the case n = 2. Recall that the rescaled
linearized operator L̃δ admits the decomposition

L̃δ = Ã−,δ + K̃1,δ + K̃2,δ + Ã+,δ,

where the rescaled collision operator K̃i,δ admits a positive eigenvalue νi,δ = O(1),
as shown in Lemma 3.11. We restrict ourselves to the continuation of ν1,δ in L̃δ . The

123

Author's personal copy



Existence, bifurcation, and geometric evolution… 475

argument is inductive: we first show the continuation of ν1,δ in Ã−,δ + K̃1,δ , then
similar arguments can apply to Ã−,δ + K̃1,δ + K̃2,δ and eventually L̃δ . Indeed, the
proof boils down to showing the existence of an eigenvalue λ̃1,δ ∈ σpt (K̃1,δ + Ã−,δ)

close to ν1,δ .
To illustrate the ideas without getting involved in technicalities, we simplify the

argument by assuming that Ã−,δ and K̃1,δ are scalar operators. Defining κ1 :=
min K1,δ , for ν̃ small, we aim to locate initial conditions (d1(ν̃), d2(ν̃)) such that
the solution (w(z̃, d1, d2), ∂z̃w(z̃, d1, d2)) of the initial value problem

⎧⎪⎨
⎪⎩
K̃1,δw = (ν1,δ + ν̃)w,

w(δ−1κ1) = d1,

∂z̃w(δ−1κ1) = d2,

satisfies

lim
z̃→+∞

(w(z̃, d1, d2), ∂z̃w(z̃, d1, d2)) = 0.

Since ν1,δ ∈ σpt (K̃1,δ), we define

(d1(0), d2(0)) = (1,
√
ν1,δ),

For ν̃ small, there exists a scalar function f (ν̃) = f0ν̃ + O(ν̃2), f0 	= 0, such that

(d1(ν̃), d2(ν̃)) = (1,
√
ν1,δ + ν̃) + f (ν̃)(1,−√ν1,δ + ν̃),

The fact that f0 	= 0 is a straightforward argument based on Prüfer’s substitution
(Birkhoff and Rota 1989) and the comparison theorem. Therefore, we have

(w(δ−1R−, d1(ν̃), d2(ν̃)), ∂z̃w(δ−1R−, d1(ν̃), d2(ν̃)))

= eδ
−1

√
ν1,δ+ν̃(R−−κ1)(1,

√
ν1,δ + ν̃) + eδ

−1
√

ν1,δ+ν̃(κ1−R−) f (ν̃)(1,−√ν1,δ + ν̃).

(3.34)
Noting that ν1,δ = O(1), we have

√
ν1,δ/δ � 1.

Therefore, for small δ > 0, there always exist ν̃1 such that the solution to the initial
value problem

{
(K̃1,δ + A−,δ)v = (ν1,δ + ν̃)v,

(v, ∂z̃v)(δ−1R−, d1(ν̃), d2(ν̃)) = (w(δ−1R−, d1(ν̃), d2(ν̃)), ∂z̃w(δ−1R−, d1(ν̃), d2(ν̃))),

satisfying

lim
z̃→−∞

(v(z̃, d1(ν̃1), d2(ν̃1)), ∂z̃v(z̃, d1(ν̃1), d2(ν̃1))) = 0.
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This is precisely what is required for λ̃1,δ = ν1,δ + ñu1 to be an eigenvalue of K̃1,δ +
A−,δ , and thus concludes the proof. ��

4 Geometric evolution of multi-component bilayers

In this section we return to the general case and analyze the geometric evolution of co-
dimensional one quasi-bilayers, deriving their curvature-driven motion under the H−1

gradient flow of the weak mFCH. The results are formal in the sense that we assume
the stability of the underlying quasi-bilayers, in particular their stability to the pearling
bifurcations described in Sect. 3. Moreover, as is typical in a multi-scale analysis, we
assume that the evolution occurs at distinct time scales, which scale according to,

τα = εαt, α = −2,−1, 0, 1, 2.

More specifically, given a fixed time scale τα = εαt , we adopt the asymptotic analysis
techniques from Dai and Promislow (2013) and Pego (1989) to analyze the initial
value problem of the rescaled weak mFCH equation,

εαuτα (x, τα) = �μ(x, τα), (4.1)

subject to initial data that corresponds to the equilibrium of the preceding time-
scale. Here the chemical potential μ = δFM

δu and the initial profile is a quasi-bilayer
uq(x, ε,m, �) with background state m and interface �, as defined in (1.16). Since
quasi-bilayers are leading order equilibria of (4.1) for α � 1, we first consider the time
scale τ1 = εt , under a slightly broader class of initial data, called pseudo-bilayers and
denoted as up(x, ε; B, �), taking the form

up(x, ε; B, �) =
{
φh(z(x)) + ε(L0,⊥)−2(B − L0V(φh))(z(x)) + O(ε2), x ∈ �l0 ,

εB + O(ε2), x ∈ �\�3l0 ,

(4.2)
with a smooth transition in �3l0\�l0 as in (1.16). Here φh is an orbit of (1.12) which
is homoclinic to the origin, and the pseudo-bilayer reduces to a quasi-bilayer when
B = 0 to leading order. We show that any pseudo-bilayer converges to a quasi-bilayer
at leading order as τ1 goes to infinity, if and only if the leading order background
state B is proportional to the quasi-bilayer mass vector M = ∫

R
φh(z)dz, see Fig. 7.

This condition represents a mass constraint—the quasi-bilayer can be the dominant
repository of mass only if the initial data has a compatible mass constitution. On
the longer time-scale τ2 = ε2t , we show that any quasi-bilayer profile initial data
evolves as a quasi-bilayer at leading order subject to a mass preserving Willmore flow
that incorporates the intrinsic curvature of the associated quasi-bilayer
h , defined in
(1.15).

In the outer region �\�l0 we have the expansions,

{
u(x, τα; ε) = u0 + εu1 + ε2u2 + ε3u3 + O(ε4),

μ(x, τα; ε) = μ0 + εμ1 + ε2μ2 + ε3μ3 + O(ε4).

123

Author's personal copy



Existence, bifurcation, and geometric evolution… 477

Fig. 7 A reduced dimension “cartoon” depiction of the multi-time-scale geometric flow that drives pseudo-
bilayers onto the affine subspace of quasi-bilayers. The cuboid represents the set of pseudo-bilayers, the
blue surface represents the set of pseudo-bilayers with leading order background state εB proportional to
the quasi-bilayer mass vector M and the red curve represents the set of quasi-bilayers, Mq . On the fast
time scale, τ = εt , the light-blue dashed curve depicts the evolution of a typical pseudo-bilayer initial data
with B ∝ M (deep blue dot on the blue surface), which converges to its fast time equilibrium, (red dot);
pseudo-bilayers with εB not proportional to M cannot converge to slow time equilibrium not onMq . While
Mq is composed of fast-time equilibria, large transients occur withinMq on the slow time scale τ2 = ε2t ,
governed by the mass preserving Willmore flow, (4.14), depicted by thick orange curve connecting the fast
time equilibrium (red dot) to its slow time equilibrium (black dot) (colour figure online)

while in the inner region �l0 the expansions take the form

{
u(x, τα; ε) = ũ(z, s, τα; ε) = ũ0 + εũ1 + ε2ũ2 + ε3ũ3 + O(ε4),

μ(x, τα; ε) = μ̃(z, s, τα; ε) = μ̃0 + εμ̃1 + ε2μ̃2 + ε3μ̃3 + O(ε4).

The timederivative involving the normal velocity of the interface admits the expansion,

εαuτα (x, τα; ε) = εq
[
∂τα ũ + ∂s ũ∂τα s + ∂z ũ∂ταr

] = −εq−1Vn,0∂z ũ + O(εq),

where n · ∂τα� := Vn(s, τα; ε) = Vn,0 + εVn,1 + O(ε2). More specifically, we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μ0 = ∇2
uW (u0)∇uW (u0),

μ1 = −∇2
uW (u0)

(−∇2
uW (u0)u1 + V(u0)

)− [−∇3
uW (u0)u1 + (∇uV(u0))

T
]∇uW (u0),

μ2 = −∇2
uW (u0)

[
�u0 − ∇2

uW (u0)u2 − 1
2∇3

uW (u0)(u1, u1) + ∇uV(u0)u1
]

+ [−∇3
uW (u0)u1 + (∇uV(u0))

T
] (−∇2

uW (u0)u1 + V(u0)
)

− [� − ∇3
uW (u0)u2 − 1

2∇4
uW (u0)(u1, u1) + (∇2

uV(u0)u1)
T
]∇uW (u0) − η2∇uW (u0),
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and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ̃0 = I0II0,

μ̃1 = I0II1 + I1II0,

μ̃2 = I0II2 + I1II1 + I2II0 + III2,

μ̃3 = I0II3 + I1II2 + I2II1 + I3II0 + III3,

where

⎧⎪⎨
⎪⎩
∂2z + εH(z, s)∂z + ε2�G − ∇2

uW (ũ) + ε(∇uV(ũ))T := I = I0 + εI1 + · · · ,(
∂2z + εH(z, s)∂z + ε2�G

)
ũ − ∇uW (ũ) + εV(ũ) := II = II0 + εII1 + · · · ,

−ε2
[−η1

(
∂2z + εH(z, s)∂z + ε2�G

)
ũ+η2∇uW (ũ)

] := III = III0 + εIII1+· · · ,

Wefollow the usualmatching procedure, first employed for theCahn–Hilliard equation
in Pego (1989), for the inner and outer expansions; that is, for any given x ∈ �, we
require that

(u0 + εu1 + ε2u2 + ε3u3 + · · · )(x + εzn, τα)

≈ (ũ0 + εũ1 + ε2ũ2 + ε3ũ3 + · · · )(z, s, τα).

For the cases α = −2,−1, 0, 1, the calculation closely follows the scalar case pre-
sented in Dai and Promislow (2013), and shows that any quasi-bilayer profile is an
equilibrium of the corresponding leading-order evolution system. We provide details
for the slow time scale τ1 = εt with initial pseudo-bilayer profile and the slow time
scale τ2 = ε2t with initial data a quasi-bilayer profile obtained as equilibrium of the
τ1 evolution.

Time scale τ1 = εt : a quenched mean curvature flow. We study the initial-value
problem, {

εuτ1(x, τ1) = �μ(x, τ1),

u(x, 0) = up(x, ε; B0, �0).
(4.3)

At leading order the outer expansion takes the form,

{
μ0 = 0,

μ1 = (∇2
uW (0)

)2 u1, �μ1 = 0.
(4.4)

while the leading order terms in the inner expansion take the form,

⎧⎪⎨
⎪⎩
μ̃0 = 0,

∂2z μ̃1 = 0,

−Vn,0∂zφh = H0(s)∂z ũ1 + ∂2z ũ2.

(4.5)
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A analysis similar to that in Dai and Promislow (2013) yields the following leading-
order evolution system, for τ1 � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ũ0 = φh(z), u0 = 0, (4.6a)

μ1 = μ̃1 = B1(τ1), (4.6b)

ũ1 = (L0,⊥)−2(B1(τ1) − L0V(φh)), (4.6c)

u1 =
(
∇2

uW (0)
)−2

B1(τ1), (4.6d)

Vn,0 = B1(τ1) · M
M2

H0, (4.6e)

where B1(0) = (∇uW (0))2B0 and we recall that M = ∫
R
φh(z)dz and M2 =∫

R
|φh(z)|2dz. From (4.6b–4.6d), we have

u(x, τ1; ε) =
{
φh(z(x)) + εũ1(x, τ1) + O(ε2), x ∈ �l0 ,

ε(∇2
uW (0))−2B1(τ1) + O(ε2), x ∈ �\�l0 ,

whose ε-scaled mass vector M, defined in (1.9), admits the expansion,

M(τ1) = |�|(∇2
uW (0))−2B1(τ1) + |�|(τ1)M + O(ε).

Expanding the mass vector M = M1 + O(ε) and the interface area |�|(τ1) =
γ0(τ1) + O(ε), we have

M1 = |�|(∇2
uW (0))−2B1(τ1) + γ0(τ1)M. (4.7)

Under a prescribed normal velocity, the time derivative of the surface area equals the
integral of the product of mean curvature and normal velocity over the surface, that is,

∂τ1 |�| =
∫
S
H0VndS, (4.8)

where r(s) : S → � is the parameterization of the interface �. At leading order, (4.8)
takes the form ∂τ1γ0 = M−1

2 (B1(τ1) · M)
∫
S H

2
0 dS. Defining the quantity

E(τ1) := B1(τ1) · M,

then (4.8) and (4.7) prescribe the evolution of E , that is,

∂τ1E = −MT
[∇2

uW (0)
]2 M

|�|M2
E
∫
S
H2
0 dS. (4.9)

It is straightforward to deduce the following lemma from (4.6, 4.7, 4.9).
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Lemma 4.1 Given a pseudo-bilayer up(x, ε; B0, �0) with the mean curvature of the
initial interface �0 far away from zero, the evolution of the pseudo-bilayer in the time
scale τ1 = εt satisfies the leading-order evolution system (4.6) with

lim
τ1→∞ B1(τ1) · M = 0, lim

τ1→∞ Vn,0 = 0,

where limτ1→∞ B1(τ1) = 0 if and only if the leading order term of the mass vector
M1, defined in rm (1.9), is proportional to M. Moreover, any quasi-bilayer profile uq

associated to {m0, �0} is an equilibrium of the leading-order evolution system (4.6)
on time scales up to τ1.

Remark 4.2 The convergence of the quantity E(τ1) := B1(τ1) · M towards zero has
a straightforward physical interpretation: for the single-component case, the growing
length of the bilayer depletes the amphiphiles in the far-field, or background, region.
The multicomponent bilayer reaches its maximal length when the inner product of
the bilayer mass vector, M, with the far field amphiphile density B is zero. However
it requires tuning of the initial mass fractions to have all species reach zero in the
far-field simultaneously. That is, while limτ1→∞ B1(τ1) · M = 0, it is non-generic
that this coincides with the ‘emptying’ of the far-field region, so that generically
limτ1→∞ B1(τ1) 	= 0. For a two species blend, that is N = 2, the existence of a one-
parameter family of homoclinics, as in the universal Birkhoff-billard Example 3.4,
would remove this condition as the bilayer composition could adapt continuously to
the the available amphiphile supply.

Time scale τ2 = ε2t : surface-area-preserving Willmore flow We study the evolution
of the set of quasi-bilayersMq in the slow time scale τ2 = ε2t , assuming that the O(ε)

components of the background profile B has converged to zero on the fast, τ1, time
scale. For the slow, τ2 time-scale, the initial profile is a quasi-bilayer uq associated
with interface {m0, �0}. This corresponds to the inner and outer expansions

ũ0(z, s, 0) = φh(z), ũ1(z, s, 0) = φh,1(z), u0(x, 0) = u1(x, 0) = 0. (4.10)

A straightforward but lengthy calculation shows that at the leading-order the solution
u of the initial value problem (4.1) remains a quasi-bilayer, parameterized by its O(ε2)

back-ground state B2 and the interface �, whose evolution is given by, for τ2 � 0,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ũ0(z, s, τ2) ≡ φh(z), ũ1(z, s, τ2) ≡ φh,1(z), u0(x, τ2) = u1(x, τ2) ≡ 0, (4.11a)
μ2(x, τ2) = μ̃2(x, τ2) = B2(τ2), (4.11b)

Vn,0(s, τ2)= M1

M2

[
�s H0+

(
η1+η2

2
+ B2 · M

M1

)
H0− 1

2
H0(H0 − a0)

2 − H1(H0 − a0)

]
,

(4.11c)
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where we recall M1 := ∫
R

|∂zφh |2dz. We calculate the ε-scaled total mass vector M
of the amphiphiles, that is,

M = |�|M + ε

[
|�|(∇2

uW (0))−2B2 + |�|
∫
R

φh,1dz +
∫
S
H0(s)dS

∫
R

zφh(z)dz

]

+ O(ε2).

Given the area expansion |�|(τ2) = γ0(τ2) + O(ε) and the mass expansion M =
M1 + O(ε), it is straightforward to see that

γ0(τ2) ≡ |�0|. (4.12)

Moreover, plugging the expression of Vn,0 (4.11c) into the surface area evolution
equation (4.8), yields the evolution of the background state

B2 · M = −M1

∫
S

[−|∇s H0|2 + η1+η2
2 H2

0 − 1
2H

2
0 (H0 − a0)2 − H1H0(H0 − a0)

]
dS∫

S H
2
0 dS

.

Introducing the zero-mass projection operator

��( f ) = f − H0

∫
S f H0dS∫
S H

2
0 dS

, (4.13)

We conclude that, under the mass conservation, the normal velocity of the interface
takes the form

Vn,0 = M1

M2
��

[(
�s − 1

2
H0(H0 − a0) − H1

)
(H0 − a0)

]
, (4.14)

which, together with the area preserving equation (4.12), completes the derivation of
Formal Result 1.

4.1 Evolution of radial bilayers under the mass preserving Willmore flow

To demonstrate the dynamics of the area-preserving Willmore flow, (4.14), we con-
sider the evolution of m well-separated spherically symmetric vesicle cells with radii
{Ri (τ2)}mi=1 in the domain � ∈ R

d . For the i-th sphere we have

H0 = (d − 1)R−1
i , H1 = −(d − 1)R−2

i ,

and the normal velocity equation (4.14) reduces to

dRi

dτ2
= (d − 1)M1

2M2
R−1
i

{
[(3 − d)R−1

i + a0][(d − 1)R−1
i − a0] − R−2

c

}
, (4.15)
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where

R−2
c :=

∑m
j=1[(3 − d)R−1

j + a0][(d − 1)R−1
j − a0]Rd−3

j∑m
j=1 R

d−3
j

.

Conservation of the total interface area gives a first integral of the ODE system (4.15),
that is,

m∑
j=1

Rd−1
j (τ2) = mR

d−1
,

where

R := d−1

√√√√ 1

m

m∑
j=1

Rd−1
j (0).

Consequently the only equilibrium of the system (4.15) is the equi-raduis solution
Ri = R for all i = 1, 2, . . . ,m. Linearizing the vector field of the ODE system about
the equi-raduis equilibrium we obtain the linearized matrix L in the form,

L = − (d − 1)M1

M2R3

[
(d − 1)(3 − d)

R
+ (d − 2)a0

](
Im − 1

m
Jm

)
,

where Jm denotes the m ×m matrix of all ones. The equi-raduis equilibrium is stable
for initial data for which

K (R, a0, d) := (d − 1)(3 − d)

R
+ (d − 2)a0 > 0, (4.16)

and unstable when K < 0.
In space dimension d = 2, the intrinsic curvature term a0 drops out of the evolution

of (4.15), which reduces to

dRi

dτ2
= M1

2M2
R−1
i

(
R−2
i −

∑m
j=1 R

−3
j∑m

j=1 R
−1
j

)
,

and admits a globally attracting equi-radius equilibrium Ri = R, that is,

lim
τ2→∞ Ri (τ ) = R, i = 1, 2, . . . ,m.

For d > 2, the stability of the equi-radius equilibrium depends upon the value of the
intrinsic curvature a0. More specifically, for d = 3, we have
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Fig. 8 Simulation of the radius of m spheres with respect to time in spatial dimension d = 3. For a0 > 0
the equi-radius solution is asymptotically stable, while for a0 < 0 the smallest radius liposome extinguishes
in finite time, leading to an eventual winner-take-all scenario

dRi

dτ2
= 2a0

M1

M2
R−1
i

⎛
⎝R−1

i − 1

m

m∑
j=1

R−1
j

⎞
⎠ ,

where the stability of the equi-radius equilibrium depends uniquely upon the sign of
a0. In particular we find

lim
τ→∞ Ri (τ2) =

{
R, a0 > 0,

Ri (0), a0 = 0,

while fora0 < 0, the equi-radius equilibrium is unstable. Figure 8 includes a simulation
of the case a0 < 0 andm = 2 andm = 3 in which the smallest circular bilayer shrinks
and disappears in finite time, leading to a coarsening phenomenon and eventually a
winner-take-all scenario.
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5 Conclusion

The multi-component functionalized Cahn–Hilliard (mFCH) free energy is a contin-
uous model for multi-component amphiphilic blends, including plasma membranes,
and its gradient flow describes their slow evolution. We established the existence of
quasi-bilayers, a class of co-dimensional one morphologies which encompasses the
orbits traced by the slow dynamics of bilayer dressings of admissible co-dimension
one interfaces, and contains the associated stationary bilayer solutions. We showed
that when evaluated on the set of quasi-bilayers, mFCH free energy reduces at leading
order to the well-known Canham–Helfrich sharp interface free energy, with intrinsic
curvature determined via a Melnikov parameter arising from the ε-order solenoidal
perturbation V of the mixing potential W, (6.2). For the special class of regularized
Birkhoff-billiard mixing potentials, we established the existence of n-striation quasi-
bilayers for sufficiently small regularization parameter δ � 1, and analyzed their
layer-by-layer pearling bifurcation, showing that all order O(δ−2) eigenvalues are in
one-to-one affiliation with a layer-collision and that the associated eigenmodes are
localized near the collision point. This analysis establishes the layer-by-layer pearling
observed experimentally. Finally we used formal multi-scale asymptotics to derive
the evolution of quasi-bilayers under the H−1 gradient flow of the mFCH, estab-
lishing that on the slow time scale τ2 = ε2t , the evolution of admissible interfaces
follows a mass-preserving Willmore flow. Moreover for radially symmetric bilayers,
the intrinsic curvature selects between regimes in which the bilayers seek a common
equilibrium radius and a winner-take-all regime in which the smallest radius bilayer
is extinguished in finite time.

Beyond bilayer morphologies, the mFCH free energy accommodates a cornucopia
of higher codimensional network structures whose interactions and rich dynamics
are unexplored; moreover the possible complexity of purely bilayer evolution is only
hinted at in this work. Indeed, of particular interest are Birkhoff-billiard potentials
which admit a family of homoclinics parametrized by one ormore independent param-
eters, such as the universal billiard potential given in Example 3.4; the associated
linearization, (3.3) of the underlying dynamical system has a non-trivial kernel, and
the associated slow dynamics will couple the geometric evolution arising from the
translational eigenmode to the compositional evolution associated to the hidden sym-
metries. Taking the functionalization parameter η1 and η2 to depend on u encodes
amphiphile preference for curvature and co-dimension, and yields a dynamic compe-
tition in which bilayer composition interacts with the geometric evolution and could
for example trigger bifurcations leading to endocytosis.

In biological settings, plasma membranes are generically very stable, in particular
they are not generically susceptible to pearling bifurcations. This strict stability to
pearling is also generic within the mFCH: indeed the term G1 in (6.1), is not typically
the gradient of a scalar function, and one anticipates a more genetical form for the
mFCH,

FgM (u) =
∫
�

1

2
|ε2D�u − G(u)|2 − ε2P(u)dx, (5.1)
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where ∇ × G 	= 0. Assuming the existence of an orbit φh of

D∂2z u − G(u) = 0,

which is homoclinic to zero, the associated linearization Lg := D∂2z − ∇uG(φh) is
generically not self-adjoint. The second functional derivative ofFgM (uh), evaluated at
a dressing,uh , of an admissible interfacewith the homoclinicφh , admits the expansion,

Lg := δ2FgM

δu2 (uh) = (LT
g + ε�s)(Lg + ε�s) + O(ε).

In many situations (Doelman et al. 1998, 2001, 2002) the spectra of Lg is com-
prised of eigenvalues {λk}Nk=1 with positive real part but with nonzero, order O(1)
imaginary part. The corresponding pearling eigenvalues of Lg take the form !k,n =
|λk − ε2βn|2 +O(ε), where the real Laplace–Beltrami eigenvalues βn > 0 are always
anO(1) distance away from the strictly complex λk . The lack of positive, purely-real
eigenvalues ofLg robustly inhibits pearling and suggests the provocative statement: the
choices available in the packing of lipids within multicomponent membranes generi-
cally serves to inhibit the mechanisms of pearling. This simple analysis is in sympathy
with diverse observations of plasma membranes; and suggests that dynamical systems
has a potentially significant role to play in our understanding of the nature of these
essential components of cellular design.

Acknowledgements The first author acknowledges supported by the National Science Foundation through
Grant DMS-1409940. Both authors thank Brian Wetton for providing numerical simulations in support of
the analysis and Arjen Doelman for several beneficial discussions.

6 Appendix: The multicomponent Gommper–Schick free energy
and its mFCH reduction

We introduce themulticomponentGommper–Schick (mGS) free energy and obtain the
mFCH as a reduction. The scalar Gommper Shick free energy (Gompper and Schick
1990), takes the form (1.1),

FGS(u) =
∫
�

ε4
1

2
|�u|2 + ε2G1(u)�u + G2(u) dx,

which we generalize for the vector case to the mGS free energy

FmGS(u) =
∫
�

ε4

2
|D�u|2 + ε2G1(u) · D�u + G2(u)dx, (6.1)

where the matrix, D = diag (d1, d2, . . . , dN ) > 0, encodes the differences in molec-
ular length and weight between the amphiphilic species. A key step in the selection
of a minimal reduction of the mGS that preserves the richness of its solution space
is the observation that for N > 1 vector valued functions G : RN 
→ RN are not
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generically gradients of a scalar valued function. In the spirit of a minimal model, we
take

G1(u) := −∇uW (u) + εV(u), (6.2)

for which the generic solenoidal perturbation V : RN 
→ R
N satisfies ∇u × V 	= 0,

in contrast to the irrotational term ∇uW whose curl is zero. The most restrictive
assumption on the form of the mGS, which parallels that made for the scalar case, is
that the energy is close to a perfect square, specifically, within the context of the weak
functionalization, G2 takes the form

G2(u) := 1

2
|−∇uW (u) + εV(u)|2 − ε2P(u),

where the perturbation P : RN 
→ R is smooth. Within this framework, the multi-
component functionalized Cahn–Hilliard (mFCH) free energy takes the form

FM (u) =
∫
�

1

2
|ε2D�u − ∇uW (u) + εV(u)|2 − ε2P(u)dx . (6.3)

To separate out the amphiphilicity term within the functionalization we make one

last adjustment, redefining W = W̃ (u) − ε2Q(D− 1
2 u), so that ∇uW = ∇uW̃ −

ε2D− 1
2 ∇uQ, we may re-expand the quadratic term, which yields

FM (u) =
∫
�

1

2
|ε2D�u − ∇uW̃ (u) + εV(u)|2

−ε2
(
P̃(u) − ε2D

1
2�u · ∇uQ(D− 1

2 u)
)
dx,

where P̃ = P + ∇uW̃ · D− 1
2 ∇uQ +O(ε). Dropping the tilde notation, integration by

parts on the last term yields the form

FM (u) =
∫
�

1

2
|ε2D�u − ∇uW (u) + εV(u)|2

−ε2
(
P(u) + ε2∇u : D

1
2 ∇2

uQD− 1
2 ∇u
)
dx, (6.4)

where the symbol : denotes the double-contraction inner product that generates the
usual norm on RN×d . In their density functional based model, Andreussi et al. (2012)
found that effective parameterization of solvation energies of solutes required two fit
parameters associated to the quantum surface area and quantum volume associated to
solvent-excluded region about the solute. In this spirit, we reduce the functionalization
termswithin themFCH to an equivalent two-parameter family. Generically we assume
that Q is positive definite, so that its Hessian is a positive definite matrix, however for
the two-parameter reduction we further restrict Q to take the form

Q(D− 1
2 u) = 1

2
η1|u|2,
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where the parameter η1 > 0 encodes the (common) strength of the hydrophilic inter-
action of the amphiphilic species with the solvent.

To better motive a simplified form for P , we note that the co-dimension one bilayer
morphologies are described to leading order by solutions, φh of the second order
system

∂2z u = ∇uW (u), (6.5)

where z is signed, scaled distance normal to the bilayer, and u is homoclinic to the
solvent phase u = 0. The impact of P is perturbative; for a quasi-critical point uc

of associated Cahn–Hilliard free energy, that is a solution of (1.3), the residual of
the dominant quadratic term in (6.4) arises at the same asymptotic order as the func-
tionalization terms. The volume integral of the funtionalized term, ε2

∫
�
P(uc) dx ,

contributes at the same order as the Helfrich term in the quadratic residual, balanc-
ing packing entropy against geometry. The Hamiltonian structure of (6.5) requires
that solutions homoclinic to zero reside on the set {u | W (u) � 0} while higher co-
dimensional profiles enter the region {u | W (u) < 0 }. This observation motivates the
choice of P as a scalar multiple ofW , since volume integrals ofW (u)make a positive
contribution for bilayers, but give zero or negative contributions for codimension two
and three morphologies.

Assumption 6.1 We consider the mFCH, (6.4), with the simplified form for the func-
tionalization terms

D = IN , Q(D− 1
2 u) = 1

2
η1|u|2, P(u) = η2W (u), V(0) = 0, W (0) = 0,

where η1 ∈ R
+, η2 ∈ R are parameters. Moreover, the origin is a strict local minima

of the mixing potential W , with a strictly positive-definite Hessian: ∇2
uW (0) > 0.

Under Assumption 6.1, the multi-component weak FCH free energy takes the final
form as in (1.6)

FM (u) =
∫
�

1

2
|ε2�u − ∇uW (u) + εV(u)|2 − ε2

(
ε2

η1

2
|∇u|2 + η2W (u)

)
dx .
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