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a b s t r a c t

We introduce the Functionalized Cahn–Hilliard (FCH) energy, a negative multiple of the Cahn–Hilliard
energy balanced against the square of its own variational derivative, as a finite width regularization of the
sharp-interface Canham–Helfrich energy. Mass-preserving gradient flows associated to the FCH energy
are higher-order phase field models which develop not only single-layer, or front-type interfaces, but
also bi-layer, or homoclinic interfaces with associated endcap and multi-junction structures. The single-
layer interfaces manifest a fingering instability which grows into endcapped bi-layers. The meandering
growth of the bi-layer interfaces and the subsequentmerging lead to amulti-junction dominated network
that bears a striking similarity to the phase separated domains of both perfluorosulfonic membranes
and amphiphilic di-block co-polymer solutions. The bi-layers generated by the gradient flows of the
FCH energy have an interfacial width which scales with ε " 1, however for fixed ε, there is a class of
bi-layers parameterized bywidth and background state. Our primary result is the asymptotic derivation of
the normal velocity of a closed bi-layer hypersurface inRd (d ≥ 2) coupled to the evolution for the surface
width, curvature, and background state. We also show the convergence of the FCH energy to a scaled
Canham–Helfrich type energy for both single and bi-layer interfaces, with the surface area coefficient of
the limiting Canham–Helfrich energy coupling to the bi-layer width. Thus the bi-layer networks grow
to maximize surface area while minimizing the square of curvature, up to the point that the increase in
surface area stretches the bi-layers too thin.

© 2010 Elsevier B.V. All rights reserved.

1. The functionalized Cahn–Hilliard energy

The controlled generation of self-organized, nanoscale net-
works from coarser mixtures is central to polymer chemistry. One
mechanism to generate such networks is through the ‘‘functional-
ization’’ of hydrophobic polymer chains and nanoparticles by the
addition of acid or alkaline tipped side-chains. In the presence
of a polar solvent the end groups interact exothermically, driv-
ing the spontaneous generation of polymer–solvent or nanopar-
ticle–solvent interfaces. The resulting phase separated network
structures can be exploited for charge selective conduction, and
have important applications to efficient energy conversion devices
such as polymer electrolyte membranes for fuel cells, [1,2], dye
sensitized solar cells [3], and bulk-heterojunction solar cells, [4,5].

The phase separation of microemulsions is typically dominated
by interfacial energies. The Canham–Helfrich free energy, [6,7],
is a sharp interface model which characterize interfaces by their
intrinsic properties of surface area and curvature. In three space
dimensions the Canham–Helfrich energy of an interface Γ is
written in terms of its mean, H , and Gaussian, K , curvatures and
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its surface area,

ECH(Γ ) =
∫

Γ

a1 + a2(H − a3)2 + a4K dS. (1.1)

The parameter, a1, denotes the energy density per unit surface
area while a2 and a4, denote the energy density attributed to
the curvatures, with a3 specifying the intrinsic, or zero-energy,
value of the mean curvature. The contribution from the Gaussian
curvature over a closed interface depends only upon the interface’s
Euler characteristic, and neglecting changes in topological type,
its surface integral is independent of Γ . An extension of the
Canham–Helfrich energy has been proposed by Gurtin and
Jabbour, [8], who include regularizations for sharp corners which
may arise at grain boundary intersections in crystalline materials.
However for soft-condensed matter, the Canham–Helfrich energy
is broadly considered to be generic, [9]. An important limitation
of a sharp-interface model, particularly when considering the
casting of polymer–solventmixtures, is the need both to couple the
interfacial energy to physics outside the interface, such as energy
andmomentum balance equations, andmore importantly, to track
interfaces through merging and pinch-off events. Moreover, the
Canham–Helfich energy cannot predict the dependence of its
parameters upon the interfacial structure, these exigencies are
beyond the scope of sharp-interface models.

0167-2789/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2010.11.016
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Phase-field models can be viewed as regularizations of sharp-
interface energies that afford a finite interfacial width while
naturally accommodating both topological change in interfacial
structure and coupling to the physics of the environment in which
they are immersed, [10,11]. Chief among these models is the
Cahn–Hilliard equation, [12], which describes the phase separation
and domain coarsening of binary mixtures of inert materials. It is a
mass-conserving H−1 gradient flow on a free energy functional of
Cahn–Hilliard type

E(u) =
∫

Ω

ε2

2
|∇u|2 + W (u) dx. (1.2)

Here u is a scalar quantity representing mixture volume fraction
over a domain Ω ⊂ Rd, d ≥ 2. For an appropriate choice of
double well potential W , solutions of the Cahn–Hilliard equation
rapidly undergo a spinodal decomposition into ‘‘pure states’’ or
‘‘phases’’ occupying respective minima of wells ofW , separated by
transition layers of O(ε) thickness. The question of the evolution
of the spatial domains occupied by the respective phases has
received considerable attention, with Pego first establishing the
motion of the interfaces through aMullins–Sekerka type flow, [13].
He introduced the chemical potential as the solution of Laplace’s
equation on each spinodal domain with the interfacial curvature
as a Dirichlet condition on the internal interfaces. For ε " 1 he
showed that the leading order normal velocity of the interface of
the spinodal domains can be obtained from the jump in the normal
derivative of the chemical potential defined on the complementary
domains. More rigorous derivations of Pego’s results quickly
followed, particularly [14] and later [15]. Around the same time,
the Γ convergence of the Cahn–Hilliard energy to the surface area
functional, that is the Canham–Helfrich energy with a2 = a4 = 0,
was rigorously established, [16,17].

While mixtures of inert materials generically seek to minimize
surface area, functionalized materials have embedded charged
groups which interact exothermically with polar solvents, sponta-
neously generating polymer–solvent interface. A prime example is
Nafion, a functionalized fluorocarbon polymer frequently used as
amembrane separator in polymer electrolytemembrane fuel cells.
From their small angle X-ray scattering (SAXS) experiments, [18],
Hsu and Gierke hypothesized that the water domain within the
Nafion forms small 4–5 nanometer balls interconnected by thin
1–2 nanometer cylindrical pores. They further suggested such a
network could arise from a balance between the elastic energy of
the interface and the hydrophilic surface interactions among the
charged functional groups and the solvent, [18]. There has since
been considerable numerical and experimental investigation of
the microstructure of Nafion and other perfluorinated membanes,
[1,19–24], with a variety of possible morphologies postulated to
explain the available data.

We propose a model for interfacial development in function-
alized polymer-solvent mixtures which is a regularization of the
Canham–Helfrich energy. The model affords a finite interfacial
width, accommodates merging and other topological reorgani-
zation, and couples naturally to momentum balance and other
macroscopic mass transport equations. We assign a negative value
to interfacial energy via the Cahn–Hilliard energy, and balance the
negative Cahn–Hilliard energy against the square of its own vari-
ational derivative. In general, we denote such an energy, F , the
functionalization of the original energy, E ,

F (u) =
∫

Ω

1
2

(
δE

δu
(u)

)2

dx − η E(u). (1.3)

In particular the Functionalized Cahn–Hilliard (FCH) energy takes
the form

F (u) =
∫

Ω

1
2

(
ε2&u − W ′(u)

)2
− η

(
ε2

2
|∇u|2 + W (u)

)
dx,

(1.4)

where W is a smooth, double-well potential with equal global
minima at states u = b±, with b− < b+ and µ± ≡ W ′′(b±) > 0.
Without loss of generality, we assume W (b±) = 0. Viewing
the square of the first variation as the bending energy of the
interface, physical considerations suggest the constant η > 0 be
small since bending energy typically dominates the hydrophilic
surface energy; for mathematical reasons it is natural to scale
η as η = ε2η2 where η2 is positive and independent of ε. It
has been demonstrated for a broad class of energies that their
associated functionalized form is bounded below and possesses
global minimizers over natural function spaces, [25]. An energy
similar to the FCH, called the Φ6 model, has been proposed for
amphiphilic systems, in which two immiscible fluids are mixed
with a surfactant forming a microemulsion at the interface, [26].
The Φ6 model was motivated by SAXS data which can be related
to the reciprocal of the Fourier transform of the second variation
of the energy evaluated at a constant background state. The
De Giorgi conjecture, concerning the Γ -convergence of (1.4) in
the case η = −ε2, when both terms are positive, has recently
been established, [27]; however the nature of the energy and
the dynamics of the associated gradient flows are substantially
different in the case η > 0.

This paper concerns the long-time evolution of the zero-mass
projection gradient flow of the FCH energy on a periodic domain
Ω ⊂ Rd for d ≥ 2,

ut = −Π0F(u), (1.5)
u(x, 0) = u0(x), (1.6)

where F is the first variation of the FCH energy. It is significant that
F factors into a constant offset of the second variation of E acting
on the first variation of E ,

F(u) ≡ δF

δu
=

(
δ2E

δu2 + ε2η2

)
δE

δu

=
(
ε2∆ − W ′′(u) + ε2η2

) (
ε2&u − W ′(u)

)
. (1.7)

We also introduce the zero-mass projection

Π0f ≡ f − 〈f 〉Ω , (1.8)

which is the complement of the average value operator

〈f 〉Ω ≡ 1
|Ω|

∫

Ω

f (x) dx. (1.9)

The evolution of the zero-mass projection functionalized Cahn–
Hilliard (ZMFCH) equation preserves the mass of the initial data,
d
dt 〈u〉Ω = 0, while decreasing the FCH energy, d

dt F (u) ≤ 0. Anal-
ysis of the zero-mass projection gradient flow of the Cahn–Hilliard
energy may be found in [28].

Fig. 1.1 depicts the spontaneous network formation in Ω ⊂ R2

which is typical of the ZMFCH equation. Reading left to right, the
initial data is four circles of ‘‘water’’ (u = b+) within a background
of ‘‘polymer’’ (u = b−). The boundary between the two domains
is given by a front-type or single-layer interface which the FCH
shares with the Cahn–Hilliard energy. The higher curvature circles
grow at the expense of the lower curvature ones, however, as can
be seen in the second frame, the circular domains are unstable
to an antipodal elongation. The elongated circle assumes a dumb-
bell shape which stretches and merges with the adjacent circles in
frames 3 and 4, forming a narrow bi-layer, capped by two semi-
circular endcaps. Cross sections of the bi-layer show a homoclinic
or bi-layer structure. Progressing from frame 5 to 6 and 7, the bi-
layer begins to narrow as it stretches and meanders, meanwhile
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Fig. 1.1. Spontaneous network generation in the gradient flow (1.5) from an initial data consisting of four circular masses. Time evolution (left to right) for a simulation
with ε = 0.03 and η = ε2. The blue and red domains correspond to the regions where u(x) resides at one of the two minima of the potential wellW (s) = (1 − s2)2/4.

Fig. 1.2. (Left) Quasi-steady equilibrium of the ZMFCH with the classic double well W = (1 − s2)2/4, ε = 0.03, and η = 4ε2. The solution was obtained from long time
(t = O(ε−4)) evolution from random initial data, u0 = ±1 with Π0u0 = 0.6|Ω|, or roughly 20% u = −1. (Center and Right) Amphiphilic di-block co-polymer mixtures of
Polyethylene oxide and Polybutadiene, from [31,32] respectively, with a higher concentration of functional groups in the right-most figure.

the endcaps intersect andmergewith the other domains. Finally, in
frame 8, we find a singlemeandering bi-layerwith a triple junction
and one endcap. The bi-layer is sufficiently thin that the resulting
structure is stationary, at least up to times t ofO(ε−4), as compared
to the t = O(ε−3) evolution depicted in frames 1–8.

1.1. Summary of results

We consider a closed hypersurface Γ with curvatures and
surface area uniformly bounded with respect to ε " 1, and which
is far from self-intersection when distance is measured in units
of ε. We ‘‘dress’’ such hypersurfaces with either a single or a bi-
layer interfacial structure. We do not consider hypersurfaces with
boundary or self-intersection, which excludes endcaps and multi-
junctions. The construction of the bi-layer interfaces is the re-
formulation of the fourth-order FCH energy as a square of a second
order energy plus an O(ε2) zeroth order perturbation, (4.9). At the
leading order in the transverse variable, the second order energy
supports heteroclinic connections which are degenerate, and can
be unfolded at O(ε) into a family of homoclinic bi-layer solutions
parameterized by a detuning parameter α that is inversely related
to the bi-layer width, (4.13), and a background state b. While α
and b are independent in the leading order construction, we show
in Proposition 4.1 that if α and b are properly related then the
leading order term can be extended to a 1D homoclinic solution.
The unfolding is generic for functionalized energies, arising from
the factored form of the first variation of a functionalized energy.
The unfolding of a heteroclinic orbit into a homoclinic orbit (a front
and a back) has been studied in detail [29,30] in thewell-separated
limit, corresponding to | ln ε| , 1, for which the homoclinics are
exponentially close to equilibrium at the plateau. For the bi-layer
interfaces, we construct homoclinics which are O(

√
ε) away from

the equilibrium value at the pulse maximum, and show that the
ground state eigenvalue of the corresponding linear operator is
O(ε). Within this regime we demonstrate that as ε → 0+ the
FCH energy evaluated at a dressed hypersurface converges to a
Canham–Helfrich energy, see (3.3) and (4.65). In particular for the
bi-layer interfaces, the limiting surface area term, a1 depends upon
the value of the detuning parameter, becoming positive if the bi-
layer is sufficiently narrow (see Fig. 1.2).

Our main result concerns solutions of the ZMFCH Eq. (1.5)
which start sufficiently close to either a single-layer or bi-layer
dressing of a hypersurface Γ . We show that as long as the
curvatures of Γ remain bounded and Γ remains far from self-
intersection, then the flow under (1.5) can be reduced to an evo-
lution of the hypersurface, through its normal velocity, coupled to
evolution equations for the interfacial parameters, whichmay vary
in time and with position along the interface. For a single-layer
interface, we uncover a two time-scale evolution. On the fastest
time scale, t = O(ε−1), the spatially constant background state
is driven to a value determined by a weighted integral of the nor-
mal velocity over the hypersurface. The normal velocity ismanifest
on the slower time-scale, t = O(ε−3), on which the adiabatically
driven background adjusts tomaintain a zero average value for the
normal velocity over the interface. In R3, the leading order normal
velocity is given by

Vn = 2Π0,Γ
(
∆s + η2 + 2H2 − 2K

)
H + O(ε), (1.10)

where Π0,Γ is the zero-mass projection operator over the hyper-
surface Γ , the parameter η = ε2η2,H = 1

2 (k1 + k2) and K = k1k2
are the mean and Gaussian curvatures, and ∆s is the Laplace–
Beltrami or surface diffusion operator on Γ . In particular in two
dimensions we show that circular interfaces are linearly unstable
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to anti-podal stretchingmodes if the curvature is too small, asmea-
sured against η2, see (3.42).

The evolution of a bi-layer dressed hypersurface couples more
subtly to the parameters, with three relevant time-scales. At the
fastest time-scale, t = O(ε−1), the spatially constant background
state is determined by a weighted average value of the bi-layer
width over the hypersurface Γ . At the second fastest time-scale,
t = O(ε−2), the adiabatically driven background state adjusts
so that the detuning parameter, α, satisfies a nonlocal–nonlinear
differential equation (5.35). We show this system has a linearly
stable family of spatially constant solutions (independent of
position along Γ ), and that the value of the constant depends only
upon the area of the hypersurface Γ and the conserved total mass
of the initial data. The normal velocity is manifest at the slowest
time-scale, t = O(ε−3), which is also the time-scale depicted in
Fig. 1.1. The normal velocity is determined by the curvatures of
the hypersurface and the value of the detuning parameter, which
in turn evolves as the interfacial area changes under its normal
velocity. In R3 the normal velocity takes the form

Vn = 2
(
∆s − β(α) + 2H2 − 2K

)
H + O(ε), (1.11)

where the coupling parameter β , given in (5.65) and more
explicitly in (5.66), approaches −η2 for wide bi-layers (α " 1)
and generically becomes positive as the bi-layer width decreases
(α increases). The increase in β is associated with an arresting of
the growth of the interfacial area. In particular, taking Γ to be
radially symmetric in R3, and fixing the total mass, then the equi-
librium value of α satisfies β(α) = 0, with the radius R deter-
mined by the mass constraint. For d /= 3 the full system is given
by (5.79). Moreover we demonstrate that these equilibrium con-
figurations are linearly stable to non-radial perturbations of the
interfacial shape Γ . In two space dimensions we more fully char-
acterize stationary interfaces in terms of a second order differen-
tial equation in arc-length. In particular, for β > 0, this curvature
equation has a symmetric figure-eight orbit homoclinic to the ori-
gin which is surrounded by hour-glass shaped periodic orbits. The
periodic orbits give the curvature as a function of arc-length, and
the integration of these curvatures yields two-dimensional curves.
For periodic orbits that are sufficiently far outside the homoclinic,
the resulting curves are non-self intersecting. Moreover these
curves evidence ameander patternwhich is a generic feature of the
ZMFCH flows, for example it is readily identifiable in the bottom-
right section of the interfacial structure in frame 8 of Fig. 1.1, and
is shown in detail in Fig. 5.3.

2. Whiskered coordinates in Rd

We define admissible interfaces to be smooth, closed (compact
andwithout boundary), orientable hypersurfaces γ : S ⊂ Rd−1 →
Rd which are far from self-intersection when distance is measured
in units of ε. For such an interface we introduce the whiskered
coordinates in a neighborhood of Γ = γ (S). Although these
coordinates have been introduced before in the context of geomet-
ric evolution, see [33] for example, their application to the fourth-
order problems hinges upon higher order terms which we make
precise in this section. We introduce the diffeomorphic change of
variables ϕ : (s, z) → x, defined by

ϕ(s, z) = γ (s) + εzν(s), (2.1)

where the Gauss map, ν : S → Sd−1, gives the outward pointing
unit normal vector perpendicular to the tangent hyperplane to Γ
at γ (s). This change of variables is valid in the neighborhood

Γ (L) ≡ {ϕ(s, z)|s ∈ S, −L/ε ≤ z ≤ L/ε}, (2.2)

of Γ , so long as L is sufficiently small, as measured against the H1

norm of γ , but independent of ε. We will call the line segments

{
γ (s) × [−L/ε, L/ε]

∣∣s ∈ Γ
}
the whiskers of γ , and refer to (s, z)

as the whiskered coordinate system.
The Laplacian takes a particularly instructive form in the

whiskered coordinates. Introducing the variables y = (s1, . . . , sd−1,
z) then x = ϕ(y) and the y coordinates are a chart forΓ (L), and the
Laplace–Beltrami formulation for the Laplacian is given by

∆ ≡ 1√
det(g)

d∑

i=1

d∑

j=1

∂

∂yi
(g−1)ij

√
det(g)

∂

∂yj
, (2.3)

where g is the metric tensor,

gij =
〈

∂x
∂yi

,
∂x
∂yj

〉

Rd
. (2.4)

Letting J denote the Jacobian matrix for (2.1), we have,

g = JTJ, (2.5)
and consequently, det(g) = J2, where J = J(s, z) is the associated
Jacobian. We may also write,

g =
(
g0 0
0 ε2

)
(2.6)

where g0(s, 0) is the metric tensor for the hyperplane Γ . In the
whiskered variables the Laplacian takes the form,

∆ = ε−2J−1 ∂

∂z
J

∂

∂z
+ ∆s, (2.7)

where ∆s is the Laplace–Beltrami operator when restricted to act
on Γ ,

∆s = 1√
det(g0)

d−1∑

i=1

d−1∑

j=1

∂

∂si

(
g−1
0

)
ij

√
det(g0)

∂

∂sj
. (2.8)

We also introduce the tangential gradient,

|∇sf |2 =
d−1∑

i,j=1
(g0)ij

∂ f
∂si

∂ f
∂sj

. (2.9)

To simplify the z derivatives in (2.7) we derive an expression for
J in terms of the principal curvatures {ki}d−1

i=1 of Γ . We first observe
that,

∂ϕ

∂si
= ∂γ

∂si
+ εz

∂ν

∂si
= ∂γ

∂si
+ εz

d−1∑

j=1

∂γ

∂sj
bji, (2.10)

where B ≡ (b)ij is the Weingarten matrix whose elements satisfy,

∂ν

∂si
=

d−1∑

j=1

∂γ

∂sj
bji. (2.11)

The eigenvalues of B are necessarily real, and are by definition the
principal curvatures of Γ . From (2.10) we see that the Jacobian
matrix takes the form,

J =

J(s,0)︷ ︸︸ ︷(
∂γ

∂s1

∂γ

∂s2
. . .

∂γ

∂sd−1
ν

) (
Id−1 + εzB 0

0 ε

)
, (2.12)

where Id−1 is the d − 1 × d − 1 identity matrix. Without loss
of generality, for a sufficiently smooth curve Γ we may choose a
parameterization γ for which det J(s, 0) = 1. Taking the determi-
nant of the Jacobian matrix yields

J(s, z) = det J = ε det(I + εzB) = ε
d−1∏

i=1

(1 + εzki)

=
d∑

j=0

εj+1Kjzj, (2.13)
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where K0 = 1 and Ki ≡ ∑
j1<···<ji kj1 · · · kji is the ith Gaussian

curvature of Γ . Taking the z derivative of the product form of the
Jacobian expression in (2.13) we obtain the identity,

Jz = ε2
d−1∑

i=1

ki
∏

j/=i

(1 + εzkj) = εκ J, (2.14)

where the extended curvature

κ(s, z) ≡ Jz/(εJ) =
d−1∑

i=1

ki
1 + εzki

=
∞∑

j=0

κjε
jzj, (2.15)

is expressed in terms of the coefficients

κj(s) = (−1)j
d−1∑

i=1

kj+1
i (s). (2.16)

We call this the extended mean curvature since κ = ∇x · ν is
the Cartesian divergence of the normal to Γ when the normal is
extended off of Γ as a constant along whiskers. We remark that
while the Jacobian remains smooth, in fact it is a polynomial in
z, the extended curvature becomes singular when the whiskers
intersect. Distributing the z derivative in (2.7) and using the
identity (2.14) yields the desired change of variables

∆x = ε−2∂2
z + ε−1κ(s, z)∂z + ∆s. (2.17)

2.1. Dressed interfaces and other notation

A function f (x) which decays exponentially to zero away from
a front Γ at an O(1) rate in z will be said to be ‘‘localized on the
surface’’ or merely ‘‘localized’’. Up to exponentially small terms
localized functions can be written in the whiskered variables, so
that f (x) = f (s, z). Functions h(z) of one variable which decay
exponentially to constant values at ±∞ can be extended to Ω by
setting them to their limiting value for |z| > 2L/ε and smooth for
|z| ∈ (L/ε, 2L/ε). The expression the hypersurface Γ dressed by h
refers to the extended function h(x), understood to mean h(z(x)).

The L2 norm overΩ orΓ will be denoted by ‖f ‖L2(Ω) or ‖f ‖L2(Γ )

respectively. The L2 inner product of a localized function over a
particular whisker will be unadorned,

(f , g)2(s) =
∫

R
f (s, z)g(s, z) dz, (2.18)

where it is understood that we extend localized functions by zero
off of Γ (2L). The corresponding whiskered L2 norm is denoted
‖f ‖2. Volume integrals of f in thewhiskered variables take the form
∫

Γ (L)
f (x) dx =

∫

Γ

∫ L

−L
f (s, z)J(s, z) dz ds. (2.19)

When f is localized about Γ the whisker integral can be
approximated by the integral over all R as
∫

Γ (L)
f (x) dx =

∫

Γ

∫

R
f (s, z)J(s, z) ds dz, (2.20)

up to exponentially small terms.Moreoverwe define thewhiskered
mass f of a localized function f as

f (s) ≡
∫

R
f (z, s) dz. (2.21)

Derivatives of a function of one variable, or of a function with
a ‘‘dominant’’ variable will be denoted with a prime. For example,
given φ = φ(z; α) a function of z parameterized by α, the partial
of φ with respect to z will be denoted by φ′. For a function f which
decays exponentially to unequal limits in z, we denote the jump of
f across a given whisker by
[[f ]](s) = f (s, ∞) − f (s, −∞). (2.22)

A function f which decays exponentially to a constant background
b as z → ±∞ can be broken into a ‘‘near-field’’ piece, f − b,
which is localized, and a ‘‘far-field’’ constant b. Wewill use γ and ρ
with subscripts to denote constants which are positive, O(1), and
independent of ε and other parameters (especially the detuning α
and background b) to leading order.

3. Geometric evolution of single layer interfaces

Fix an admissible interface Γ . We wish to consider a potential
minimizer of (1.4) obtained by dressingΓ with a 1D front solution,
which we search for among the unconstrained critical points of F .
Such critical points solve F(u) = 0, where F is given by (1.7), and a
natural choice for an approximate critical point is the critical point
φf(z) of the Cahn–Hilliard energy given by

∂2
z φf − W ′(φf) = 0, (3.1)

subject to φf → b± as z → ±∞. From the change of variables
(2.1)wemay smoothly extendφf to all ofΩ . To derive a connection
between the FCH energy (1.4) and the Canham–Helfrich energy
(1.1) we use the whiskered coordinates to expand F ,

F (φf) =
∫

Γ

∫

R

[
1
2

(
∂2
z φf + εκ∂zφf + ε2∆sφf − W ′(φf)

)2

− η

(
1
2
|∂zφf|2 + ε2|∇sφf|2 + W (φf)

)]

J(s, z)ds dz. (3.2)

However φf is independent of the tangential variables s, so the
tangential gradient and Laplace–Beltrami terms are zero. Scaling
η = ε2η2 and integrating (3.1) to obtain the point-wise equality
1
2 |φ′

f |2 = W (φf), we find

lim
ε→0+

ε−3F (φf) = ‖φ′
f‖2

2

∫

Γ

1
2
κ2
0 − η2 ds,

= ‖φ′
f‖2

2

∫

Γ

[
(d − 1)2

2
H2 − η2

]
ds, (3.3)

which is a Canham–Hilfrich energy with zero intrinsic and
Gaussian curvatures.

3.1. Fully dressed, single-layer Ansatz

To resolve the geometric evolution an admissible interface
Γ under the zero-mass gradient descent (1.5) we construct the
following fully-dressed, single-layer Ansatz

Φf(s, z) = φf(z) + ε2φ2(s, z) + ε3b3, (3.4)

where the second order term φ2 is chosen to reduce the size of
the residual and incorporates curvature dependent corrections.
The scalar parameter b(t) = b− + ε3b3(t) is a perturbation to
the spatially constant background state. We also introduce the
linearized one-dimensional operator

Lf = ∂zz − W ′′(φf), (3.5)

which enjoys the properties outlined in Lemma A.1.
The fully dressed single-layer Ansatz has the residual

F(Φf) = F(φf) + L(ε2φ2 + ε3b3) + O(ε4), (3.6)

where the linearization of the first variation of F , see (1.7), about
Φf, that is the second variation ofF evaluated atΦf, takes the form

L = (A − η) A − W ′′′(Φf)(ε
2∆Φf − W ′(Φf)), (3.7)
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in terms of the ‘‘Cahn–Hilliard’’ linearization

A := δ2E

δu2 (Φf) = −ε2∆ + W ′′(Φf). (3.8)

It is instructive to remark that for Φ an approximate critical
point of E , the second variation of F at Φ is approximately a
functional mapping of the second variation of E at Φ . Changing
to whiskered coordinates in the Laplacian and expanding the
extended curvature κ according to (2.16) it is straightforward to
calculate that

F(φf) = ε2 (
κ2
0φ

′′ + κ1Lf (zφ′
f)
)
+ ε3

(

Lf (κ2z2φ′
f)

+ κ0κ1(zφ′
f)

′ + (κ1z∂z + η2 + ∆s)κ0φ
′
f

)

+ O(ε4), (3.9)

while

L = L2f + εκ0
(
L∂z + ∂zLf − W ′′′(φf)φ

′
f
)
+ O(ε2). (3.10)

Plugging these expressions into the residual yields the expansion

F(Φf) = ε2 (
L2f φ2 + κ2

0φ
′′
f + κ1Lf (zφ′

f)
)
+ O(ε3), (3.11)

and since κ2
0φ

′′
f + κ1Lf (zφ′

f) ⊥L2(R) ker(Lf ), we may choose φ2 to
eliminate the ε2 terms,

φ2 = L−2
f (−κ2

0φ
′′
f − κ1Lf (zφ′

f)) = −
(

κ2
0

2
+ κ1

)
L−1
f (zφ′

f), (3.12)

where we used (A.3). With the curvature terms incorporated into
φ2 the residual becomes,
F(u)

= ε3
(
Lf (κ0(φ2)z + κ2z2φ′

f) + L2f b + κ0(Lf φ2 + κ1zφ′
f)z

+ κ0κ1zφ′′
f + (∆s + η2)(κ0φ

′
f) − κ0W ′′′(φf)φ

′
fφ2

)

+O(ε4). (3.13)

3.2. Single-layer interfacial dynamics

To address the geometrically driven flow of Γ we decompose u
as,
u(x, t) = Φf(s, z, t) + v(x, t), (3.14)
whereΦf is the Ansatz (3.4), which depends upon time through the
hypersurface Γ and the background value b = b− + ε3b3(t). The
term v is the perturbation to the Ansatz which we regard as small.
From the chain rule we have

∂tΦf = φ′
fzt + ε3b3,t + O(ε2zt , ε2κt). (3.15)

We will see below that zt , κt = O(ε3), while b3,t = O(1), and the
error terms areO(ε5). Putting the decomposition of u into (1.5), we
obtain
ztφ′

f + ε3b3,t + vt = −Π0F(Φf + v) = −Π0F(Φf) − Lv

− Π0N (v), (3.16)
where L = Π0L and N (v) represents the nonlinear terms in v.
WhileL is self-adjoint,L is not, however σ (L) ⊂ σ (Π0LΠ0)∪{0}
is real, and moreover σ (Π0LΠ0) interleaves σ (L), so that the
spectral set ofL controls that of L, see [34] for details (see Fig. 3.1).

The adjoint operator LĎ = LΠ0 has a kernel spanned by the
constant function Ψ

Ď
0 ≡ 1. Extending the results of [33], it has

been shown in [35] that the spectrum of−L is bounded above by a
constant of O

(
ε2‖κ0‖2

L∞(Γ ), ε
4η2

2

)
. More significantly, there exists

ν > 0 for which the adjoint eigenspace corresponding to eigen-
values of −L which are greater than −νε is spanned by functions

Fig. 3.1. A cartoon representation of spectrum of the linear operator, −L, of
the ZMFCH about a single-layer dressed interface. The eigenvalues (all real)
are plotted against the transverse index n, with the associated eigenfunctions
Ψ0 and Ψ0,n indicated. The blue box indicates the eigenspace employed in the
spectral projection. The interface curvatures increase the translational eigenvalues
associated to {Ψ0,n} by O(ε2κ2

0 ).

{Ψ Ď
0,n|1 ≤ n ≤ Nε} with a separated variables decomposition

Ψ
Ď
0,n(s, z) = ε− 1

2 φ′
f(z)Θn(s) + Ψ ⊥

0,n(s, z). (3.17)

The perturbations Ψ ⊥
0,n are orthogonal to φ′

f on each whisker and
areO(ε) in L2(Ω), while the scaling gives the leading order term an
L2(Ω) norm of 1 with Θn independent of ε. Moreover the {Θn}Nε

n=0
form an approximate basis of L2(Γ ), in the sense that any function
f which is orthogonal to this set in L2(Γ ) satisfies the inequality
‖f ‖L2(Γ ) ≤ εc‖∆sf ‖L2(Γ ), (3.18)
for a constant c > 0 which depends only upon ν and Γ . To render
the decomposition (3.14) unique, we impose the non-degeneracy
conditions

v ⊥ {Ψ Ď
0 } ∪{ Ψ

Ď
0,j|1 ≤ j ≤ Nε}. (3.19)

These conditions make the semigroup generated by L uniformly
contractive on v. In particular, so long as the flow leaves Γ within
the admissible class of interfaces, we assume that v remains the
same size as the residual, namely O(ε3) in L2(Ω), and that the non-
linear terms N (v) are yet higher order and hence negligible, see
[36,37] for rigorous treatments.

To obtain the normal front velocity we project (3.16) onto the
eigenspace spanned by {Ψ Ď

0,j}Nε
j=1. The linear terms in v and vt

drop out due to (3.19). Neglecting the nonlinear terms in v, the
remaining terms are localized on Γ , and we may change to the
whiskered coordinate system. Using the Jacobian expansion (2.13)
we obtain the leading order expression
∫

Γ

(
‖φ′

f‖2
2zt + ε3[[φf]]b3,t

)
Θn(s) ds

= −
∫

Γ

Θn(s)(Π0F(Φ), φ′
f)2 ds. (3.20)

The integrands of (3.20) dependupon s only through the curvatures
of Γ , and for admissible interfaces these are smooth functions.
Thus it follows from the approximate basis property of theΘ ′

j s that
we may equate the two integrands as L2(Γ ) functions at leading
order,

zt = −
(
F(Φf), φ

′
f
)
2

‖φ′
f‖2

2
+

(〈F(Φf)〉Ω − ε3b3,t
) [[φf]]

‖φ′
f‖2

2
. (3.21)

To simplify (3.21)we take the L2(R) inner product of (3.13)with
φ′ and integrate by parts to cancel the κ0κ1 terms. We obtain

(F(Φf), φ
′
f)2 = ε3

[
−κ0(Lf φ2, φ

′′
f ) + (∆s + η2)(κ0)‖φ′

f‖2
2

− κ0(W ′′′(φf)(φ
′
f)

2, φ2)
]

+ O(ε4). (3.22)
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Using the definition (3.12) of φ2 we evaluate

(Lf φ2, φ
′′
f ) = −

(
κ2
0

2
+ κ1

) (
zφ′

f, φ
′′
f
)
L2

= 1
2

(
κ2
0

2
+ κ1

)
‖φ′

f‖2
2, (3.23)

while (3.12) and (A.2) show that

(W ′′′(φf)(φ
′
f)

2, φ2) = −
(

κ2
0

2
+ κ1

) (
Lf φ′′

f , L
−1
f zφ′

f
)
2

= 1
2

(
κ2
0

2
+ κ1

)
‖φ′

f‖2
2. (3.24)

Combining these results gives the leading order expression

(F(Φf), φ
′
f) = ε3‖φ′

f‖2
L2

(
(∆s + η2)κ0 −

(
κ3
0

2
+ κ0κ1

))

+O(ε4), (3.25)

and introducing the scaled normal front velocity Vn = −ε−3zt , we
rewrite (3.21) as

Vn =
[
(∆s + η2)κ0 −

(
κ3
0

2
+ κ0κ1

)]

− (ε−3 〈F(Φf)〉Ω − b3,t)
[[φf]]
‖φ′

f‖2
2
. (3.26)

To evaluate 〈F(Φf)〉Ω we return to (3.13) and observe that all
terms except those involving the background perturbation, b3, are
localized on Γ . We integrate over Ω and change to the whiskered
variables for the localized terms. So long as |Γ | = O(1) " ε−1, the
extra factor of ε that the localized terms acquire from the Jacobian
renders them lower order than the far-field terms. At the leading
order we have

〈F(Φf)〉Ω = ε3

|Ω|

∫

Ω

L2f b3 dx + O(ε4)

= ε3b3
|Ω|

∫

Ω

(
W ′′(φf)

)2 dx

+O(ε4) = ε3b3µ2
0 + O(ε4), (3.27)

where we have introduced µ2
0 = |Ω−|µ2−+|Ω+|µ2+

|Ω| > 0. Combining
(3.26) with (3.27) we obtain

Vn =
(

∆s + η2 − κ2
0

2
− κ1

)
κ0 + [[φf]]

‖φ′
f‖2

2

(
b3,t − µ2

0b3
)
+ O(ε).

(3.28)

The evolution of the background state is determined from the total
mass conservation. Projecting (3.16) onto Ψ

Ď
0 = 1, the right-hand

side is identically zero and we obtain

b3,t = −ε−3

|Ω|

∫

Ω

ztφ′
f dx = −ε−2 [[φf]]

|Ω|

∫

Γ

zt ds

= ε
[[φf]]
|Ω|

∫

Γ

Vn ds. (3.29)

Substituting the normal velocity, (3.28), into this expressing and
dropping the lower order terms yields an ordinary differential
equation for b3,

b3,t + ε
µ2

0[[φf ]]2 |Γ |
‖φ′

f‖2
2|Ω| b3 = ε

[[φf]]
|Ω|

∫

Γ

(
∆s + η2 − κ2

0

2
− κ1

)
κ0 ds

+O(ε2). (3.30)

This equation relaxes on a fast, t = O(ε−1), time-scale to a
stable equilibrium determined by a Γ -averaged value of the front
curvatures

b3 = ‖φ′
f‖2

2

µ2
0[[φf]]|Γ |

∫

Γ

(
∆s + η2 − κ2

0

2
− κ1

)
κ0 ds + O(ε). (3.31)

In turn the curvatures evolve on a slow t = O(ε−3) time scale
adiabatically driving the equilibrium value of b3. On this longer
time-scale, the background evolution becomes b3,t = O(ε3), which
may then be neglected in (3.28). On closer inspection, one observes
that the equilibrium value of the background is exactly the average
value of the normal velocity over the surface Γ . More specifically,
the fast–slow system (3.28)–(3.30) yields an effective evolution
which may be succinctly written as

Vn = Π0,Γ

(
∆s + η2 − κ2

0

2
− κ1

)
κ0 + O(ε), (3.32)

whereΠ0,Γ denotes the zero-mass projection over the interfaceΓ .

3.3. Two-dimensional results

In two space-dimensions the mean curvature is the unique
curvature, which determines the shape of the hypersurface up
to rigid body rotations. We can relate the curvature back to the
z variable through the equalities ν = ε∇xz and κ = ∇x · ν.
Introducing the slow time τ = ε4t , we have

κτ = ε3∇x · ∇xzt = −∆sVn. (3.33)

However, in two dimensions (2.15) reduces to

κ(s, z, τ ) = κ0(s, τ )

1 + εzκ0(s, τ )
, (3.34)

where κ0 is the curvature. In particular κ1 = −κ2
0 , and the normal

velocity reduces to

Vn = Π0,Γ

(
∂2
s + η2 + κ2

0

2

)
κ0 + O(ε). (3.35)

Taking the derivative of (3.34) with respect to τ and introducing
zτ = −ε−1Vn we find

κτ = ∂τ κ0(1 + εzκ0) − κ2
0εzτ − εzκ0∂τ κ0

(1 + εκ0z)2
= ∂τ κ0 + κ2

0Vn

+O(ε), (3.36)

and the leading order terms in (3.33) become

∂τ κ0 = −
(
∂2
s + κ2

0
)
Vn(κ0). (3.37)

In the context of the ZMFCH equation, the explicit normal velocity
of a single-layer interface takes the form

∂τ κ0 = −
(
∂2
s + κ2

0
)
Π0,Γ

(
(∂2

s + η2)κ0 + 1
2
κ3
0

)
. (3.38)

The result above assumes that s is arc-length along the curve, how-
ever as the normal velocity stretches the curve, the arc-lengthmust
be re-parameterized. We identify an arbitrary point on the curve
as s = 0, and maintain this label through its evolution by normal
velocity. The re-parameterization incorporates a convective term
which accounts for the splaying of the lines of constant s. With this
modification the R2 evolution equation becomes

∂τ κ0 +
(∫ s

0
Vnκ0(s) ds

)
∂sκ0

= −
(
∂2
s + κ2

0
)
Π0,Γ

(
(∂2

s + η2)κ0 + 1
2
κ3
0

)
. (3.39)
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It follows immediately from (3.39) that a circular interface
of any radius is stationary. Indeed the curvature is independent
of s and the zero-mass projection Π0,Γ annihilates the constant
residual on the right-hand side. On the other hand, if Γ consists
of two well-separated circles of differing radius, then the larger
curvature circle (smaller radius) will shrink in curvature (grow
in radius) while the smaller curvature circle (larger radius) will
grow in curvature (shrink in radius). Barring instability of the
circular shape, the two circles will converge to a common radius.
However, an analysis of circular curves shows that if their radius
is sufficiently large, then they are linearly unstable to non-radial
perturbations. Indeed, consider a surface Γ whose curvature is a
small, zero mass perturbation from a constant value, κ0 = κ0 +
v(s, τ ) with ‖v‖L∞(Γ ) " 1. The linear evolution for v is given by

∂τv = −
(
∂2
s + κ2

0
) (

∂2
s + η2 + 3

2
κ2
0

)
v, (3.40)

with the zeromass projection and the convective re-parameteriza-
tion both contributing at a nonlinear level in v. On a circle with
curvature κ0, the eigenfunctions of the linear operator on the
right-hand side of (3.40) are of the form ψn(s) = eiξns. The
constraints that the perturbation correspond to a closed curve, and
be 2πκ−1

0 –periodic, leaves the spatial frequencies ξn = nκ0, for
n = ±2, ±3, . . . . The associated eigenvalues of this operator are
given by

µn = −κ4
0
(
−n2 + 1

) (
−n2 + η2

κ2
0

+ 3
2

)
. (3.41)

The most unstable eigenvalues, µ±2, are positive so long as the
functionalization constant η2 is sufficiently large compared to the
curvature,

η2 >
κ2
0

2
. (3.42)

The resultant instability is manifest as an ‘‘antipodal’’ stretching
of the near-circular interface. Conversely, circles with sufficiently
small radius are linearly stable under the evolution. We remark
that the rigid body translation of the curve is not detectable
through the curvature formation, and constitute neutral modes in
the linear stability.

4. The bi-layer dressing

For the single-layer dressing, there was a self-evident class of
1D critical points available. For a bi-layer dressing, we first re-
examine the mass-constrained critical points of (1.4) which satisfy
the equation

Π0
δF

δu
(u) = 0. (4.1)

This is a fourth order differential operator coupled to a rank-one
projection, a combination whose rich structure provides for the
existence of families of equilibria. We construct a class of approxi-
mate 1D critical points that correspond to interfacial bi-layerswith
a homoclinic or pulse-like profile in their transverse cross-section.
To accomplish this construction we unfold the saddle–saddle con-
nection of the single-layer or heteroclinic solutions by introduc-
ing parameters corresponding to neutral modes of the energy. We
begin by observing that the kernel ofΠ0 is comprised of the spatial
constants on Ω , so if the shifted functional S satisfies

δS

δu
= δF

δu
+ c, (4.2)

for some constant c , then u will satisfy (4.1) for S exactly when
it does for F . The first parameter we introduce is the background

state b of the homoclinic pulse profile, which is dual to the kernel
of Π0. To proceed, after an integration by parts we may write the
functionalized energy as

F (u) =
∫

Ω

1
2
ε4(&u)2 + ε2f1(u)|∇u|2 + f2(u) dx, (4.3)

where we have introduced

f1(u) = W ′′(u) − η

2
, (4.4)

f2(u) = 1
2
(W ′(u))2 − ηW (u). (4.5)

We modify the potential f2 to have a double zero at u = b,

f3(u) = f2(u) − f ′
2(b)(u − b) − f2(b), (4.6)

and define the shifted energy

S(u) =
∫

Ω

1
2
ε4(&u)2 + ε2f1(u)|∇u|2 + f3(u) dx, (4.7)

which satisfies (4.2) for c = −f ′
2(b). We rewrite the shifted energy

in terms of the potential

G0(u) ≡
∫ u

b

∫ s2

s1=b
f1(s1) ds1 ds2 = WT (u; b) − η

4
(u − b)2, (4.8)

where WT (u; b) = W (u) − W (b) − W ′(b)(u − b) is the result
of shifting the double zero of W at b− to b by subtracting the
appropriate Taylor polynomial. Integrating by parts on f1 in (4.7)
and completing the square we obtain

S(u) =
∫

Ω

1
2

(
ε2&u − G′

0(u)
)2 + p(u) dx, (4.9)

where p(u) = f3(u) − 1
2

(
G′
0(u)

)2.

Lemma 4.1. The potential p takes the form

p(u) =
(
W ′

T (u) − W ′′(b)(u − b)
)
W ′(b) − ηWT (u)

+ η

2

(
W ′

T (u) − η

4
(u − b)

)
(u − b), (4.10)

with a double zero at u = b. With the scaling b = b− + ε2b2 and
η = ε2η2 then p(u) = ε2p2(u) where

p2(u) =
p20(u)︷ ︸︸ ︷

µ−
(
W ′(u) − W ′(b) − µ−(u − b)

)
b2

+

p21(u)︷ ︸︸ ︷(
1
2
W ′(u)(u − b) − W (u) + W (b)

)
η2 + O(ε), (4.11)

in L∞([b, −b]), and µ− = W ′′(b−). Moreover, if uW ′′′(u) > 0, then
both p20 and p21 are non-positive on [b, −b], and zero at z = b.

Proof. The expression (4.10) follows from the definitions of f3 and
G0. The expression (4.11) follows from an expansion of W ′ and W
about −b−. To see that p20 is non-positive on [−b, b], observe that
p20(b) = 0while p′

20(u) = W ′′(u)−W ′′(b−). From the assumption
onW ′′′ we see thatW ′′ has a global minima at u = 0 and is strictly
decreasing on [b, 0], hence p′

20 < 0 on [b, 0], and by symmetry
on [0, −b], so that p20 is decreasing on [b, −b]. Turning to p21 we
observe that p21(±b) = 0with p21(−b) > 0 and p21 having a third-
order zero at u = bwith p21(u) < 0 for 0 < u − b " 1. Observing
that p′′

21 = W ′′′(u)(u − b), is zero at u = b and u = 0, we see that
p′
21 can have at most one zero in (b, −b), and hence p21 has exactly

one zero on (b, ∞), which must be the zero at u = −b. !
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4.1. The detuning parameter and reduction to 2nd order

To break the degeneracy of the saddle–saddle connection of the
heteroclinic associated to the potential W we introduce a ‘‘tilt’’
parameter α which tunes the shape of the potential,
G(u; α, b) = G0(u; b) − εαg(u; b). (4.12)
The optimal choice for the perturbation g will be made explicit
below. With this notation S can be written

S(u; α, b) =
∫

Ω

1
2

(
ε2&u − G′(u) − εαg ′(u)

)2
+ p(u) dx, (4.13)

so that (1.5) has the equivalent formulation,

ut = −Π0
δS

δu

= −Π0

S(u)
︷ ︸︸ ︷((

ε2∆ − G′′(u) − εαg ′′(u)
)

(ε2&u − G′(u) − εαg ′(u)) + p′(u)

)

. (4.14)

We wish to define the leading order bi-layer solution, φ =
φ(z; α, b), as the unique solution of the 1D, scaled equation

φ′′ = G′(φ), (4.15)
which is homoclinic to b and symmetric about z = 0. The existence
of φ requires that the potential G has a double zero at u = b and
a second, transverse zero to the right of b. Accordingly we impose
the constraints g(b) = g ′(b) = 0, as well as g > 0 on (b, ∞) with
g(s) " G(s) for s sufficiently large. For such g the following lemma
holds.

Lemma 4.2. In the scaling b = b− + ε2b2 and η = ε2η2 there exists
a smooth function

α∗(b) = − ε

g(b+)

(
µ−b2(b+ − b−) + η2

4
(b+ − b−)2

)

+O(ε2), (4.16)

for which G(·; α∗(b), b) has a double zero at u = φ∗
m(b). For α > α∗,

this double zero breaks into two zeros, the smaller of which takes the
form

φm(α, b) = b+ −
√

2εαg(b+)

µ+
+ O

(
ε

3
2

)
. (4.17)

In particular, the value φm(α) is the maximum of φ over z ∈ R. and

p2(φm) = −µ2
+(b+ − b−)b2 −

√
2αg(b+)

µ+

(

µ−(µ+ − µ−)b2

+ µ+
2

(b+ − b−)η2

)

ε
1
2 + O(ε), (4.18)

which is positive so long as b2 < 0.
Proof. The expression (4.17) follows from a Taylor expansion of
G near b+, and (4.18) results from substitution of (4.17) into
(4.11). !

Linearizing the differential equation (4.15) about φ yields the
operator

L = ∂zz − G′′(φ), (4.19)
whose point spectrum and eigenfunctions play a crucial role
in the geometric surface evolution. We choose g , satisfying the
properties above, to simplify the analysis. The 1D version of the
full critical point equation, (4.1) is a fourth-order ODE whose
exponential dichotomies contain complex eigenvalues with O(ε2)
imaginary parts. As a consequence, an exact homoclinic solution
will manifest oscillations of O(ε2) magnitude at spatial infinity,

which is impossible for homoclinic solutions of second order
equations. An optimal choice of g will yield a second order
Eq. (4.15) whose homoclinic solution is the correct bi-layer Ansatz
toO(ε2). Achieving this requires that g satisfies Lg ′(φ) = O(ε). The
choice

g(u; b) ≡
∫ u

b

√
Ws(t; b) dt, (4.20)

where Ws(u; b) = W (u − ε2b2) is a shifting of the double well,
realizes this goal by rendering g ′(φ) asymptotically proportional
to the ground state eigenfunction of L which bifurcates from zero
when α > α∗. This is the second neutral mode we seek.

Lemma 4.3. Let g be as in (4.20) with ε " 1. Then there exists
ν0 > 0, independent of ε, such that the spectrum of the linear
operator L given in (4.19) consists of two point eigenvalues

σp(L) = {λ1 = 0, λ0(α, b)}, (4.21)

and a remainder contained in (−∞, −ν0]. The ground state
eigenvalue is given by the formula

λ0 = ε
4αγ0

‖φ′‖2
2

+ O
(
ε2) , (4.22)

where

γ0 ≡ −
(
g ′′′(φ)g(φ), g ′(φ)

)
2 = √

µ+g(b+) + O(
√

ε) > 0. (4.23)

The corresponding normalized eigenfunctions take the form

ψ1 = φ′

‖φ′‖2
, (4.24)

ψ0 = g ′(φ)

‖g ′(φ)‖2
+ O(ε), (4.25)

with the equality on ψ0 holding in L2. Moreover we may relate g ′(φ)
to the translational eigenvalue

g ′(φ) = 1√
2
|φ′| + O(

√
ε), (4.26)

in the L1 norm.

Proof. The operator L is a self-adjoint, 2nd-order, Sturm–Liouville
operator and its spectrum is real. It is well known that linearizing
about two well-separated front solutions produces a point
spectrum consisting of two localized copies of the spectrum of
a single front. Since φf has a simple eigenvalue at λ = 0 with
the remainder of its spectrum to the left of −ν0, it remains to
determine the location of the two small eigenvalues of L. We first
take the z derivative of (4.15) which shows, from the translational
symmetry, that φ′ is in the kernel of L. This eigenvalue has one
node so the Sturm–Liouville theory implies that the ground state
eigenvalue, λ0, must be positive.

To develop an expansion for λ0 and the ground-state ψ0 > 0,
we first re-write the potential G as

G(s) =
(
g ′(s)

)2 − εαg(s) + ε2h(s), (4.27)

where the higher order term

h(s) = ε−2(WT (s) − Ws(s)) − η2

4
(s − b)2

=
(
W ′(s) − µ−(s − b)

)
b2 − η2

4
(u − b)2 + O(ε), (4.28)

has a double zero at s = b, is O(1) over the range of φ and is
smooth. The function g is onlyC1 with discontinuities in its second
derivative at s = b, b+ − ε2b2. However g is piece-wise C∞, and



Author's personal copy

684 N. Gavish et al. / Physica D 240 (2011) 675–693

is C∞ on the range of φ, since φm(b) < b+ − ε2b2. Applying L to
g ′(φ) and using (4.15) and its first integral

1
2

(
φ′)2 = G(φ), (4.29)

to eliminate derivatives of φ, we obtain

Lg ′(φ) = 2g ′′′(φ)G(φ) + g ′′(φ)G′(φ) − G′′(φ)g ′(φ). (4.30)

Taking derivatives of (4.27) with respect to s we may eliminate G
for g and h and their derivatives. The leading order terms cancel,
yielding

Lg ′(φ) = −2εαg ′′′(φ)g(φ) + ε2r(φ), (4.31)

where the second order term

r(s) = 2g ′′′h + g ′′h′ − g ′h′′, (4.32)

is zero at s = b and hence r(φ) is O(1) in L2. Since the right-hand
side of (4.31) is even, it is orthogonal to the kernel of L and wemay
invert, yielding

g ′(φ) = −2εα
(
g ′′′(φ)g(φ) + εr(φ), ψ0

)
2

λ0
ψ0 + εg⊥, (4.33)

in L2, where g⊥ ⊥ ψ0 is O(1). Taking the L2 norm of both sides of
(4.33), we deduce that ‖g ′(φ)‖2 = O(1) since φ ranges from b to
φm with O(1) derivatives. From this we may infer that λ0 = O(ε),
which further yields the asymptotic expression

λ0 = 2εα|
(
g ′′′(φ)g(φ), ψ0

)
2 |

‖g ′(φ)‖2
+ O(ε2). (4.34)

Dividing both sides of (4.33) by their L2 norms yields (4.25), and
using this to substitute for ψ0 in (4.34) yields (4.22) with γ0 =
−

(
g ′′′(φ)g(φ), g ′(φ)

)
2. Using (4.27) and (4.29) we may isolate

g ′(φ),

g ′(φ) =
√

1
2
|φ′|2 + εαg(φ) − ε2h(s). (4.35)

Expanding this expression yields (4.26), except for a neighborhood
of z = 0 where φ′(z) = φ′′(0)z + O(z3) where φ′′(0) = G′(φm) =
O(

√
ε). These estimates yield the O(

√
ε) error bound in (4.26). To

simplify the expression for γ0 we use (4.26) to write

γ0 = − 1√
2

∫

R
g ′′′(φ)g(φ)|φ′| dz + O(

√
ε)

=
√
2

∫ ∞

0
∂z

(
g ′′(φ)

)
g(φ) dz + O(

√
ε),

= − 1√
2

∫ ∞

0
∂z(g ′(φ))2 dz +

√
2(g ′′(b)g(b)

− g ′′(φm)g(φm)). (4.36)

However g ′(b) = 0 and g ′(φm) = O(
√

ε) so its square is O(ε).
Similarly, g(b) = 0, and the expression reduces to

γ0 = −
√
2g ′′(φm)g(b+) + O(

√
ε). (4.37)

Finally,

g ′′(φm) = W ′
s(φm)

2
√
Ws(φm)

= −
√

µ+
2

+ O(
√

ε), (4.38)

and we recover (4.23). !

For i = 0 and 1 we introduce the spectral projection πi associ-
ated to the eigenvector ψi,

πif = (f , ψi)2ψi, (4.39)

and their sum π = π0 + π1, and its complement π̃ = I − π .

Lemma 4.4. The partial derivatives of the pulse with respect to the
detuning parameter takes the form

∂αφ = −ραψ0 + ε2φ⊥
α , (4.40)

where ρα = ρα0/(α − α∗) + O(ε) with

ρα,0 = ‖φ′‖3
2

4
√
2γ0

> 0, (4.41)

and

φ⊥
α = −L−1π̃g ′(φ), (4.42)

is O(1) in L2. The partial derivative of the pulse with respect to the
background b takes the form

∂bφ = −ε−1ρbψ0 + 1 + φ⊥
b , (4.43)

where

ρb = µ−‖φ′‖2
2

4αγ0
ψ0 + O(ε) > 01 (4.44)

and ‖φ⊥
b ‖2 = O(1), and is orthogonal to ψ0 and ψ1.

Proof. Taking the α partial derivative of (4.15) yields the equality

L∂αφ = −εg ′(φ) = −ε(g ′(φ), ψ0)2ψ0 − επ̃g ′(φ). (4.45)

Inverting L yields

∂αφ = −ε
(g ′(φ), ψ0)2

λ0
ψ0 − εL−1π̃g ′(φ), (4.46)

using (4.25) and (4.22) to replace ψ0 and λ0, and observing that
π̃g ′(φ) = O(ε) yields (4.40).

From (4.12) we observe that

∂bG′(u) = −W ′′(b) + εαg ′′(u) + ε2 η

2
= −G′′

0(b)

+ εαg ′′(u), (4.47)

so that taking ∂b of (4.15) yields

L∂bφ = −G′′
0(b) + εαg ′′(φ) (4.48)

which can be written in terms of L2(R) functions as

L(∂bφ − 1) = G′′(φ) − G′′
0(b) + εαg ′′(φ)

= G′′
0(φ) − G′′

0(b). (4.49)

Projecting onto ψ0 and its complement and inverting we obtain

∂bφ − 1 = ε−1ρbψ0 + φ⊥
b , (4.50)

where

− ρb = ε(∂bφ − 1, ψ0)2 = ε

λ0
(L∂bφ, ψ0)2 − εψ0

= − ε

λ0
G′′
0(b)ψ0 + O(ε). (4.51)

However, G′′(b) = W ′′(b−) +O(ε) = µ− +O(ε), and replacing λ0
with (4.22) yields (4.43) and (4.44) with

φ⊥
b = L−1π̃

(
G′′
0(φ) − G′′

0(b)
)
. ! (4.52)
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4.2. Construction of the homoclinic profile

Prior to constructing the fully dressed Ansatz, we first consider
a formal construction of an homoclinic solution of the fourth-
order problem in one space dimension. This requires a consistency
condition relating α and b, which is recovered in Section 5.1 as an
equilibrium solution of the dynamics. This construction requires
tuning α as a function of the background state b. We recall the
scalings b = b− + ε2b2, η = ε2η2, and p = ε2p2 and determine α
for which we can construct Φ0 = Φ0(z; b, ε) that solves
S(Φ0) =

(
∂2
z − G′′(Φ0) − εαg ′′(Φ0)

)

×
(
∂2
z Φ0 − G′(Φ0) − εαg ′(Φ0)

)

+ ε2p′
2(Φ0) = 0. (4.53)

We write Φ0 = φ + εφ1 + · · · where φ1 is orthogonal to ψ0. We
substitute this ansatz into (4.53) and expand in ε. At the leading
order we find

S(Φ0) =
(
L − εG′′′(φ)φ1 − εαg ′′(φ)

)

×
(
εLφ1 − εαg ′(φ) + ε2A2

)
+ ε2p′

2(φ) + O
(
ε3), (4.54)

where we will see that the form of the second order term, A2, in
the Cahn–Hilliard remainder is not relevant at the leading order.
Solving S(Φ0) = 0 for φ1 at the leading order we find

L2φ1 = L
(
αg ′(φ) − εA2

)
− εp′

2(φ) + ε
(
G′′′(φ)φ1 + αg ′′(φ)

)

×
[
Lφ1 − αg ′(φ)

]
+ O

(
ε2) . (4.55)

By even–odd symmetry the right-hand side of this equation
is orthogonal to the translational eigenfunction ψ1 of L. Our
consistency condition, which keeps φ1 = O(1) and determines α,
requires the right-hand side be orthogonal to ψ0,

λ0
(
αg ′(φ) − εA2, ψ0

)
2 − ε

(
p′
2(φ), ψ0

)
2

+ε
((
G′′′(φ)φ1 + αg ′′(φ)

) [
Lφ1 − αg ′(φ)

]
, ψ0

)
2 = 0. (4.56)

The Eq. (4.55)–(4.56) appear to be coupled, however, assuming for
the moment that (4.56) has a solution, then we may solve (4.55)
for φ1 by projecting with π̃ and using the fact that π̃L has an O(1)
inverse,

φ1 = αL−1π̃g ′(φ) + O(ε). (4.57)

However, from (4.25), π̃g ′(φ) = O(ε) and we see that φ1 = 0, and
(4.56) reduces to

λ0α
(
g ′(φ), ψ0

)
2 − εα2 (

g ′′(φ)g ′(φ), ψ0
)
2

= ε
(
p′
2(φ), ψ0

)
2 + O(ε2). (4.58)

However using (4.25) and (4.35) we find
(
g ′′(φ),

(
g ′(φ)

)2)

2
= 1

2

∫

R
g ′′(φ)(φ′)2 dz + O(ε)

= 1
2

∫

R
∂z

(
g ′(φ)

)
φ′ dx + O(ε),

= −1
2

∫

R
g ′(φ)φ′′ dz + O(ε)

= 1√
2

∫ ∞

0
φ′φ′′ dz + O(ε) = O(ε), (4.59)

and using (4.22) and (4.25) to eliminate λ0 and ψ0 we find

α2 = ‖φ′‖2
(
p′
2(φ), ψ0

)
2

2
√
2µ+g(b+)

+ O(ε). (4.60)

On the other hand, using (4.25) and (4.26) again we see
(
p′
2(φ), ψ0

)
2 = (p′

2(φ), |φ′|)2
‖φ′‖2

+ O(
√

ε)

= − 2
‖φ′‖2

∫ ∞

0
p′
2(φ)φ′ dz

= 2p2(φm)

‖φ′‖2
+ O(

√
ε), (4.61)

so that

α2 = p2(φm)√
2µ+g(b+)

+ O(
√

ε). (4.62)

Finally, using the expression (4.18) then for b2 < 0 we find the
equilibrium relation

α = α̂(b2) =
√

−γ1b2 + O(
√

ε), (4.63)
where

γ1 =
√

µ+
2

µ+(b+ − b−)

g(b+)
. (4.64)

These results lead to the following proposition

Proposition 4.1. For the scaling η = η2ε
2 and b = b− + ε2b2, then

the solution φ of (4.15) renders ‖S(φ)‖L2 = O(ε2). Moreover, for the
choice α(b) = α̂(b2) given by (4.63)we have (S(Φ0), ψ0)2 = O(ε3).
Moreover, for any admissible hypersurface Γ ⊂ Rd

lim
ε→0+

ε−3F (φ)

= ‖φ′‖2
2

∫

Γ

[
(d − 1)2

2
H2 +

(
α2

4
− η2

)]
ds. (4.65)

Proof. Recalling the energy (1.4), we must capture the leading-
order non-zero contributions of each of the two terms. From (4.8)
and (4.12) we see that

W (u) = G(u) + εαg(φ) + O(ε2). (4.66)

Combining this with the change of variables (2.17) we find

ε2∆φ − W ′(φ) = G′(φ) − W ′(φ) + εκ0φ
′ + O(ε2),

= ε
(
κ0φ

′ + αg ′(φ)
)
+ O(ε2),

= ε
(
κ0φ

′ + α‖g ′(φ)‖2ψ0
)
+ O(ε2). (4.67)

On the other hand, from the first integral (4.29) of (4.15) we have

ε2

2
|∇φ|2 + W (φ) = |φ′|2 + O(ε). (4.68)

Inserting these identities into (1.4) and changing to whiskered
coordinates yields

F (Φ0) = ε3
∫

Γ

∫

R

1
2

(
κ0φ

′ + α√
2
‖φ′‖2ψ0

)2

− η2|φ′|2 dz ds

+O(ε4). (4.69)

The contributions to the energy from points away from the
hypersurface Γ are O(ε4) and may be neglected. Performing the
integration over R, using the orthogonality of φ′ and ψ0 and the
definition of κ0 from (2.16), we obtain (4.65). !
From Eq. (4.65) we infer that for small values of α1 (wide bi-layers)
the energy is decreased by increasing the surface area of the hyper-
surface Γ , while for α1 > 2

√
η2, the interfacial energy increases

with both increasing curvature and increasing surface area. The
corresponding gradient flow (1.5), with its conservation of mass,
will couple the evolution of the hypersurface to the bi-layer width
and the background value, as is demonstrated in the sequel.
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4.3. Fully dressed bi-layer Ansatz

Recovering the leading order dynamics of a bi-layer interface
under Eq. (4.14) requires a higher order Ansatz with the residual
resolved to O(ε3). The bi-layer, φ, generated from the reduced
second-order Eq. (4.15) incorporates the detuning parameter, α,
and the far-field effect of the background state b. An ansatz of
sufficient fidelity to resolve the leading-order normal velocity
requires the incorporation of curvature dependent effects in the
near-field shape of the bi-layer profile. We take the detuning
parameter α = α(s, t) and the background state b = b(t) to
be independent, and derive their quasi-equilibrium dependence
as well as the temporal relaxation of a variable width interface,
α = α(s, t), onto a spatially uniform width interface.

The fully dressed bi-layer Ansatz takes the form,

Φ(s, z; α(s, t), b(t)) = φ(z; α, b) + ε2φ2(s, z), (4.70)
where α(s, t) is the relaxation parameter within the potential G
and b(t) = b−+ε2b2(t) is the background state. Due to the form of
the tilt function, g , we take φ1 = 0, while φ2 is a localized function
to be determined. From (4.14)we see that the Ansatz has a residual
S(Φ) =

(
ε2∆ − G′′(Φ) − εαg ′′(Φ)

) (
ε2∆Φ − G′(Φ) − εαg ′(Φ)

)

+ p′(Φ). (4.71)
Recalling the whiskered form of the Laplacian, (2.17), the
expansion of the extended curvature, (2.15) and (2.16), the scalings
η = ε2η2, b = b− + ε2b2, and the asymptotic reduction p(Φ) =
ε2p2(Φ) with p2 given by (4.11), we formally expand both the
prefactor and the Cahn–Hilliard residual,
S(Φ) =

(
P0 + εP1 + ε2P2

) (
εA1 + ε2A2 + ε3A3

)

+ ε2p′
2(φ) + O(ε4). (4.72)

The prefactors are given by P0 = L, from (4.19), and

P1 = κ0∂z − αg ′′(φ), (4.73)

P2 = zκ1∂z + ∆s − G′′′(φ)φ2, (4.74)
which operate on the Cahn–Hilliard residuals

A1 = κ0φ
′ − αg ′(φ), (4.75)

A2 = Lφ2 + zκ1φ
′ + ∆sφ. (4.76)

Wewill see that the form of A3 is not relevant to the dynamics. The
operator L acts on near-field functions supported on the whisker
neighborhood, Γ (1), where it depends upon α and b through
φ. On each fixed whisker, the projection π̃ removes the small
eigenspaces of L, giving π̃L an O(1) inverse on that whisker.

We choose the perturbations φ1 and φ2 to reduce the size of
the projected residual, π̃P(Φ), on each whisker. Expanding the
residual in orders of ε yields

S(Φ) = ε

R1︷︸︸︷
LA1 +ε2

R2︷ ︸︸ ︷(
LA2 + P1A1 + p′

2(φ)
)

+ ε3

R3︷ ︸︸ ︷
(LA3 + P1A2 + P2A1) +O(ε4). (4.77)

The O(ε) terms are all localized near the front. Using Lφ′ = 0 and
recalling (4.31), they take the form

R1 ≡ −αLg ′(φ) = −α
(
2εαg ′′′(φ)g(φ) + ε2r(φ)

)
. (4.78)

We already have π̃R1 = 0 to leading order, which is consistent
with φ1 = 0, and we incorporate the higher order terms into R2
and R3. At O(ε2) we have

R̃2 ≡ R2 − 2α2g ′′′(φ)g(φ) = LA2 + P1A1 + p′
2(φ)

− 2α2g ′′′(φ)g(φ), (4.79)

and we render π̃ R̃2 = 0 along each whisker through the choice

φ2 = −L−2π̃
(
LÃ2 + P1A1 + p′

2(φ) − 2α2g ′′′(φ)g(φ)
)

, (4.80)

where Ã2 ≡ A2 − L2φ2 is the second order Cahn–Hilliard residual
obtained when φ2 = 0. In particular A2 reduces to

A2 = π Ã2 − L−1π̃
(
P1A1 + p′

2(φ) − 2α2g ′′′(φ)g(φ)
)
. (4.81)

We have constructed an Ansatz Φ = Φ(x; α, b), for which
π̃S(Φ) = O(ε3) uniformly along each whisker. Indeed,

S(Φ) = ε2
(
R̃20ψ0 + R̃21ψ1

)
+ ε3R̃3 + O(ε4) (4.82)

where R̃2j ≡ (R̃2, ψj)2, and

R̃3 ≡ LA3 + P1A2 + P2A1 − αr(φ). (4.83)

5. Evolution of bi-layer interfaces

We resolve the time evolution of the parameters z = z(t) (as a
function of the hypersurface Γ = Γ (t)), the tilt α = α(s, t), and
the background state b = b(t), for solutions of (1.5) arising from
initial data u0 from a neighborhood of the dressed manifold

M ≡ {Φ(z; α, b)|Γ admissible, b = b−

+ ε2b2, α(s) > α∗(b)
}
. (5.1)

For such initial data we decompose the solutions u as,

u(x, t) = Φ(s, z, t) + v(x, t), (5.2)

where Φ is the Ansatz (4.70), which depends upon time through
the parameters, and v is the perturbation to the Ansatz. From the
chain rule we have

∂tΦ = ztφ′ + αt∂αφ + ε2b2,t∂bφ + O(εzt , εαt , ε
3b2,t). (5.3)

We will see below that zt = O(ε3), while αt and b2,t are both O(ε),
so that the error terms are O(ε4). Putting the decomposition (5.2)
of u into the evolution Eq. (4.14), we obtain

ztφ′ + αt∂αφ + ε2b2,t∂bφ + vt = −Π0S(Φ + v) (5.4)

or equivalently

ztφ′ + αt∂αφ + ε2b2,t∂bφ + vt = −Π0S(Φ) − Lv − Π0N (v),

(5.5)

where L = Π0L and N (v) represent the nonlinear terms in v.
While the linear operator

L ≡
(
ε2∆ − G′′(Φ) − εαg ′′(Φ)

)2 + p′′(Φ) − G′′′(Φ)

×
(
ε2∆Φ − G′(Φ) − εαg ′(Φ)

)
, (5.6)

is self-adjoint, L is not, however σ (L) ⊂ σ (Π0LΠ0) ∪ {0},
and σ (Π0LΠ0) interleave with σ (L), so that the spectral set
of L controls that of L. The adjoint operator LĎ has a kernel
spanned by the constant function Ψ

Ď
0 ≡ 1. Applying the results

of [35], the spectrum of −L is bounded above by a constant of
O

(
ε2‖κ0‖2

L∞(Γ ), ε
4η2

2

)
while there exists ν > 0, independent of

ε, for which the adjoint eigenspace corresponding to eigenvalues
greater than −νε takes the form (see Fig. 5.1)

Yν(Ω) = span {Ψ Ď
0 } ∪{ Ψ

Ď
i,j|i = 0, 1, and 1 ≤ j ≤ Nε}. (5.7)

Here the Ψ
Ď
i,j have a separated variables decomposition

Ψ
Ď
0,j = ε− 1

2 ψ0(z; α)Θ0,j(s) + Ψ ⊥
0,j(x), (5.8)

Ψ
Ď
1,j = ε− 1

2 ψ1(z; α)Θ1,j(s) + Ψ ⊥
1,j(x), (5.9)
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Fig. 4.1. The modified potential G for α > α∗ (solid) and α = α∗ (dotted). At
α = α∗ the potential G has a double zero at u = φ∗

m(b). Increasing the value of α
above α∗ lowers G about its pivot point at u = b, where it maintains a double zero.
The double zero at u = φ∗

m breaks into two zeros of G, the smaller of which, denoted
φm , is also the maximum of the homoclinic pulse, φ.

Fig. 5.1. A cartoon representation of spectrum of the operator, −L, the negative
of the linearization of the ZMFCH equation about a bi-layer dressed interface. The
eigenvalues (all real) are plotted against the transverse index n, arrows connect
the eigenfunctions Ψ0, Ψ0,n and Ψ1,n to their associated eigenvalue. The bilayer
mean-curvature, κ0, andwidth-parameter,α, manifests their influence on the small
eigenvalues through shifts of the order O(ε2‖κ0‖2

L∞(Γ ), ε
2‖α‖2

L∞(Γ )).

where the corrections Ψ ⊥
i,j are O(ε) in L2(Ω), and are orthogonal

to ψ0 and ψ1 on each whisker. With this normalization we have
‖Ψ

Ď
i,j‖L2(Ω) = 1. Moreover, as for the single-layer interfaces, it is

shown in [35] that there exists an Nε > 0 such that both of the sets

Yν,i(Γ ) = {1} ∪
{
Θi,j|j = 1, . . . ,Nε

}
, (5.10)

for i = 0 and 1 form an approximate basis of L2(Γ ) in the sense
that any function f which is orthogonal to one of Yν,i(Γ ) in L2(Γ )
satisfies

‖f ‖L2(Γ ) ≤ εc‖∆sf ‖L2(Γ ), (5.11)

for a constant c > 0 which depends only upon ν and Γ . The
decomposition (5.2) is under-constrained, as the remainder v and
the parameters α, b, are not uniquely determined by u and Γ .
To eliminate this degeneracy, and eliminate secular growth of
the perturbation v, we impose the non-degeneracy conditions
v ⊥L2(Ω) Yν . These conditions make the semigroup generated by
L uniformly contractive on v. Defining πν to be the L spectral
projection onto Yν(Ω), and π̃ν = I − πν , we will show elsewhere
that v remains of the same magnitude as π̃νS(Φ), which from
(4.82) is O(ε3), so long as Γ remains admissible under the flow.
The nonlinear terms N (v) are yet of a higher order and may
be neglected in the derivation of the leading-order shape and
parameter evolution. In the sequel we derive these evolution
equations by taking the L2(Ω) projection of (5.5) against each
family of adjoint eigenfunctions, exploiting the approximate basis
property of Yν,i(Γ ) for i = 0, 1. For each projection we break
the integrands into near- and far-field terms, change the near-field
integrals to the whiskered variables, observe the orthogonality of
the terms that are linear in v, and drop the nonlinear terms in v
(see Fig. 4.1).

5.1. Relaxation to a uniform bi-layer

Projecting (5.5) onto the kernel, Ψ
Ď
0 of LĎ, we obtain the

expression for conservation of mass within the system
∫

Γ

∫

R

[
ztφ′ + αt∂αφ

]
J(s, z) dz ds

+ε2b2,t
∫

Ω

∂bφ dx = 0. (5.12)

From the decomposition (4.43) of ∂bφ and the Jacobian expansion
(2.14) we have
∫

Ω

∂bφ dx = |Ω| − ε−1
∫

Γ

∫

R
ρbψ0J(s, z) ds dz + O(ε)

= |Ω| −
∫

Γ

ρbψ0 ds + O(ε). (5.13)

From the expansion (4.40) we have
∫

R
∂αφJ(s, z) dz = −εραψ0 + O(ε2). (5.14)

The first term on the left-hand side of (5.12) expresses the
influence of the normal velocity on the hypersurface area |Γ |. The
scaled normal velocity zt = zt(s, t) is a function of position s along
the hypersurface, and not distance z to the hypersurface, so the
integral over the whiskers becomes
∫

R
φ′J(s, z) dz = ε2κ0

∫

R
∂z(φ − b)z dz + O(ε4)

= −ε2κ0Mb + O(ε4), (5.15)
where

Mb(α, b) ≡
∫

R
(φ − b) dz, (5.16)

denotes the mass of the homoclinic above the background state.
The full integral of this term expresses the rate of change of mass
in the bi-layer arising from stretching by the geometric flow,
∫

Γ

∫

R
ztφ′J(s, z) dz ds = −ε2

∫

Γ

ztκ0Mb ds. (5.17)

Factoring out an ε term, the mass conservation Eq. (5.12) takes the
form

∫

Γ

[
widening︷ ︸︸ ︷(

ρααt + ερbb2,t
)
ψ0 +

stretching︷ ︸︸ ︷
εztκ0Mb

]
ds =

background︷ ︸︸ ︷
ε|Ω|b2,t , (5.18)

to a leading order in each term. The distribution of mass within the
system can change by stretching the hypersurface, local changes of
the width of the bi-layer, or varying the background state.

To address the evolution of the detuning parameter α we
project (5.5) onto Ψ

Ď
0,j. As all terms are localized on the front we

may change the integral to the whiskered coordinates,
∫

Γ

∫

R

(
ztφ′ + αt∂αφ + ε2b2,t∂bφ

)
Ψ

Ď
0,jJ(s, z) dz ds

= −
∫

Γ

∫

R
Ψ

Ď
0,jΠ0S(Φ)J(s, z) dz ds. (5.19)

Expanding the Jacobian and Ψ
Ď
0,j according to (2.14) and (5.8)

respectively, neglecting the lower orderΨ ⊥
0,j corrections, and divid-

ing the equation by ε, the leading order terms are
∫

Γ

(
εzt(zφ′, ψ0)2κ0 − αtρα − εb2,tρb

)
Θ0,j(s) ds

= −
∫

Γ

Θ0,j(s)(Π0S(Φ), ψ0)2 ds. (5.20)
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The set Yν,0(Γ ) forms an approximate basis, so assuming the
admissibility Γ , and hence smoothness of the curvatures, as well
as smoothness of α is s, the integrandsmust agree to leading order,
yielding

αtρα + εztκ0ρz(α) + εb2,tρb = (Π0S(Φ), ψ0)2, (5.21)

where we have introduced

ρz(α) ≡ −(zφ′, ψ0)2 = − (z, ∂zg(φ))2

‖g ′(φ)‖2
+ O(ε) = g(φ)

‖g ′(φ)‖2

+O(ε) > 0. (5.22)

Turning to the right-hand side of (5.21) we see from (4.82) that
S(Φ) is localized and its mass over all of Ω is of a higher order, so
that

Π0S(Φ) = ε2
(
R̃20ψ0 + R̃21ψ1

)
+ O(ε3). (5.23)

The solvability condition (4.63) is precisely the vanishing of R̃20,
which we now derive through the dynamics. Integrating against
ψ0 on each whisker we obtain

(Π0S(Φ), ψ0)2 = ε2R̃20 + O(ε3), (5.24)

where from (4.79) we have

R̃20 =
(
LA2 + P1A1 + p′

2(φ) − 2α2g ′′′(φ)g(φ), ψ0
)
2 , (5.25)

however the LA2 term can be neglected as Lψ0 = λ0ψ0 = O(ε)
renders it a lower order. Expanding the second term, and exploiting
even–odd cancellations yields

(P1A1, ψ0)2 = κ2
0
(
φ′′, ψ0

)
2 + α2 (

g ′′(φ)g ′(φ), ψ0
)
2 . (5.26)

We see from (A.6) that
(
φ′′, ψ0

)
2 = 1

2

(
L(zφ′), ψ0

)
= 1

2λ0ρz(α),
which is O(ε). Similarly from (4.58) and the line below it, the
second inner product on the right-hand side of (5.26) is also O(ε).
To address the remaining terms in (5.25) we recall the derivation
of (4.63) which leads us to the expression

(Π0S(Φ), ψ0)2 = −2
√
2 γ0

‖φ′‖2

(
α2 − α̂2(b)

)
+ O(ε). (5.27)

In particular, the evolution Eq. (5.21) reduces to

αtρα + εztκ0ρz(α) + εb2,tρb = −2
√
2 γ0ε

2

‖φ′‖2

(
α2 − α̂2(b)

)

+O(ε). (5.28)

In the sequel it will be shown that zt = O(ε3) and hence
this term is of a lower order in both (5.18) and (5.28). These two
equations describe the leading order evolution of the background
state and the bi-layer width. Moreover they can be uncoupled
at the leading order. We first observe from (4.23) that γ0 is
independent of α to a leading order. We can obtain the same result
for ‖φ′‖2 since

∂α‖φ′‖2
2 = −2

(
∂αφ, φ′′)

2 = −1
2

(
L∂αφ, zφ′)

2 + O(ε)

= εα
(
g ′(φ), zφ′)

2 + O(ε) = O(ε), (5.29)

where we used (4.45) and (A.6) to obtain the second and third
equalities. Introducing the surface-weighted average

〈f 〉0 =
∫

Γ
f (s)ψ0(s) dS∫
Γ

ψ0(s) dS
, (5.30)

wemultiply (5.28) byψ0 and integrate overΓ and use the result to
replace the ‘‘widening’’ terms in (5.18). Dropping the lower-order

‘‘stretching’’ terms, we obtain the leading order evolution equation
for the background state,

b2,t = −2
√
2ε γ0

∫
Γ

ψ0dS
‖φ′‖2|Ω|

〈
α2 − α̂2(b2)

〉
0 + O

(
ε2) . (5.31)

Returning to (5.28), and dropping the lower order stretching term
we have the evolution

αt + ε
ρb

ρα

b2,t = −2
√
2 γ0ε

2

‖φ′‖2ρα

(
α2 − α̂2(b2)

)
+ O(ε3). (5.32)

The evolution for the background perturbation b2 takes place on a
relatively fast t = O(ε−1) time-scalewhile the bi-layerwidth seeks
its equilibrium on a t = O(ε−2) time-scale. We may view α as a
constant over the t = O(ε−1) time-scale. Recalling the equilibrium
relation (4.63), we see that b2 solves a linear equation

b2,t = −2
√
2ε γ0

∫
Γ

ψ0dS
‖φ′‖2|Ω|

(〈
α2〉

0 + γ1b2
)
+ O

(
ε

3
2

)
. (5.33)

In particular, b2 relaxes after an O(ε−1) transient to its stable
equilibrium value

b̂2(α) ≡ −
〈
α2

〉
0

γ1
< 0. (5.34)

Subsequently, the background state is driven adiabatically by
the relaxation parameter and its time derivative scales as b2,t =
O(‖αt‖∞) = O(ε2). On the longer t = O(ε−2) time-scales the
b2,t term on the left-hand side of (5.32) may be neglected, yielding
a nonlinear-nonlocal system of ODEs for α(s, t) with a common
equilibrium value given by the nonlocal term b̂2. Moreover the
equilibrium value of b2 is precisely the value that makes the right-
hand side of (5.31) zero, viz.

〈
α2

〉
0 = −

〈
α̂2(b2)

〉
0. Substituting from

(4.23) and (4.41) to simplify the leading coefficient, the system
(5.32) takes the appealing closed form

αt(s, t) = −16ε2 µ+g2(b+)

‖φ′‖2
2

α
(
α2 −

〈
α2〉

0

)
+ O(ε

5
2 ). (5.35)

This equation has a family of equilibria comprised of functions
that are constant in the transverse variable s. To address the linear
stability of this family, we consider zero mass perturbations w to a
constant background state α(s) = α0 + w(s), where ‖w‖ " 1.
Such perturbations do not impact the surface-weighted average
operator at a linear level. Indeed taking the variational derivative,
the contributions from ∂αψ0 cancel since α0 is constant in s, and
we have
δ
〈
α2

〉
0

δα
(w) = 2α0 〈w(s)〉0 = 0. (5.36)

Modulo perturbations to the total mass, which merely shift the
constant value of α, the linearization of the nonlocal system (5.35)
uncouples into ODEs with a common equilibrium value, and the
linear stability of the family of uniform states follows.

The actual equilibrium values α and b̂(α) ≡ b− + ε2b̂2(α)
attained depend upon the initial mass of u0 and the area |Γ | of
the hypersurface. Since the remainder v in (5.2) satisfies the non-
degeneracy conditions, and in particular has zero mass, we have
the equality∫

Ω

u0(x) dx =
∫

Ω

u(x, t) dx =
∫

Ω

Φ(z, α, b̂(α)) dx,

=
∫

Ω

(
b̂(α) +

(
φ(z; α, b̂(α)) − b̂(α)

)
+ ε2φ2

)
dx,

= b̂(α)|Ω| + ε

∫

Γ

Mb(α, b̂(α)) ds + O(ε3|Γ |),

= |Ω|b− + ε|Γ |Mb(α, b̂(α)) + O(ε2). (5.37)
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An initial datum close to M has a mass of the form
∫

Ω
u0(x) dx =

|Ω|b− +εm0, for somem0 > 0 independent of ε. The quasi-steady
value of α satisfies the equality

Mb(α) = m0

|Γ | + O(ε). (5.38)

From Lemma A.3 we see that Mb is strictly decreasing in α with a
logarithmic singularity as α → α+

∗ . The intermediate value theo-
rem provides the existence of a unique solution α = α(m0, |Γ |) of
(5.38) for admissible curves Γ and sufficiently large (scaled) initial
massesm0.

5.2. Geometric evolution of bi-layer interfaces

We assume that the detuning and background parameters
have relaxed to their quasi-equilibria, which we denote with
the unadorned α and b. The evolution of the hypersurface, Γ ,
couples to these quasi-equilibria through (5.38) since the changes
in hypersurface area, while slow, are cumulative and will compete
for mass. We introduce the slow time τ = ε3t and the normal
velocity Vn = −zτ = −ε−3zt . As the parameters are driven by
the interface evolution, we assume that ατ = b2,τ = O(1) in this
regime. To address the geometric evolution of the hypersurface,
as characterized by the leading order extended curvature, κ0, we
project (5.5) onto Ψ

Ď
1,j, for each j = 1, . . . ,Nε , and change to the

whiskered coordinates,∫

Γ

∫

R

(
−ε3Vnφ

′ + ε3ατ ∂αφ + ε5b2,τ ∂bφ
)
Ψ

Ď
1,jJ(s, z) dz ds

= −
∫

Γ

∫

R
Ψ

Ď
1,jΠ0S(Φ)J(s, z) dz ds. (5.39)

Expanding the Jacobian and Ψ
Ď
1,j according to (2.14) and (5.9) re-

spectively, expanding ∂αφ and ∂bφ according to (4.40) and (4.43),
and dividing by ε we obtain,∫

Γ

(
−ε3Vn‖φ′‖2 + ρz(α)κ0

(
ε4ατρα + ε5b2,τ ρb

))
Θ1,j(s) ds

= −
∫

Γ

Θ1,j(s) [(Π0S(Φ), ψ1(1 + εzκ0))2] ds

− ε
1
2

∫

Γ

(
Π0S(Φ), Ψ ⊥

1,j
)
2 ds + O(ε4) (5.40)

where ρz(α), defined in (5.22), arises from the second order terms
in the Jacobian expansion.

To simplify (5.40) we observe that Π0S(Φ) = S(Φ)−〈S(Φ)〉Ω ,
the residual S(Φ) is localized so that its average value 〈S(Φ)〉Ω is
smaller than S(Φ) by a factor of ε. Moreover (〈S(Φ)〉 , ψ1)2 = 0
and the contribution from 〈S(Φ)〉Ω is in fact aO(ε2) lower order; so
we may drop Π0 in the first integral on the right-hand side above.
Moreover, from (5.23) we see that the O(ε2) terms in S(Φ) lie in
R(π) on each whisker and are thus orthogonal to the correction
term Ψ ⊥

1,j. The correction term projects only onto the cubic R3 term
from S(Φ), which is localized on the whiskers and hence satisfies
‖R3‖L2(Ω) = O

(
ε

1
2 |Γ | 1

2

)
. Since ‖Ψ ⊥

1,j‖L2(Ω) = O(ε) we see that
the projection of the residual onto the correction term satisfies the
inequality

ε
1
2

∣∣∣∣

∫

Γ

(
Π0S(Φ), Ψ ⊥

1,j
)
2 ds

∣∣∣∣ ≤ c
∣∣∣∣ε

− 1
2

∫

Ω

ε3R3Ψ
⊥
1,j dx

∣∣∣∣

≤ ε
5
2 ‖R3‖L2(Ω)‖Ψ ⊥

1,j‖L2(Ω)

≤ cε4|Γ |, (5.41)
and is a lower order for |Γ | " ε−1. The contribution from the
evolution of the detuning parameter and the background are at
most O(ε4) and are neglected.

Assuming uniform bounds on the curvatures of Γ inH1(Γ ), the
approximate basis property ofYν,1(Γ )permits us to equate the two
integrands of (5.40) at the leading order,

Vn = ε−3 (S(Φ), ψ1)2
‖φ′‖2

+ ε−2κ0
(S(Φ), zψ1)2

‖φ′‖2
+ O(ε). (5.42)

The quasi-equilibrium of α and b implies that R̃20 = O(ε). Using
this fact while expanding the residual from (4.82), we obtain

Vn = 1
‖φ′‖2

(
ε−1R̃21 + R̃31

)
+ O(ε), (5.43)

where R̃31 ≡ (R̃3, ψ1)2.
A key fact, which both complicates the analysis and enriches

the dynamics of the front evolution, is that the leading order term
is degenerate, bringing higher-order effects into play. From (4.79)
the O(ε−1) term in (5.43) takes the from

R̃21 =
(
LA2 + P1A1 + p′

2(φ) − 2α2g ′′′(φ)g(φ), ψ1
)
2 . (5.44)

However Lψ1 = 0, while using (4.73) and (4.75) to expand P1A1
and exploiting parity we find

R̃21 = −2ακ0

‖φ′‖ (∂zg ′(φ), φ′)2 = ακ0

‖φ′‖
(
Lg ′(φ), zφ′)

2

= −2εα2κ0

‖φ′‖
(
g ′′′(φ)g(φ), zφ′)

2 , (5.45)

where we used (4.31) and (A.6) in the reduction above. The normal
velocity takes the form

Vn = R̃31

‖φ′‖2
− 2α2κ0

‖φ′‖2
2

(
g ′′′(φ)g(φ), zφ′)

2 + O(ε). (5.46)

This analysis justifies our scaling, as Vn = O(1), particularly since
(5.46) was obtained for an arbitrary detuning profile α(s) and is
independent of the relaxation of α to a uniform value over the
interface.

To obtain an explicit representation for the normal velocity we
must expand R̃31. Turning to (4.83) we observe that (LA3, ψ1)2 =
(A3, Lψ1)2 = 0, while from (4.32) and parity considerations we
find that (r(φ), ψ1)2 = 0. We are left with

R̃31 = (P1A2 + P2A1, ψ1)2 . (5.47)

We address the P1A2 term first. Since the equilibrium value of α is
constant in the tangential coordinate s, we may drop ∆sφ in (4.76)
and expand the inner product as

(P1A2, ψ1)2 =
(
Lφ2 + κ1zφ′, PĎ

1ψ1

)

2
=

(
L2φ2, L−1π̃PĎ

1ψ1

)

2

+ κ0κ1

2
‖φ′‖2. (5.48)

From (4.25), (A.6) and (A.7) we calculate

L−1π̃PĎ
1ψ1 = −π̃

(
κ0

2
zψ1 + α

2
√
2
zψ0

)
+ O(ε), (5.49)

so that (5.48) reduces to

(P1A2, ψ1)2 = − κ0

2‖φ′‖2

(
L2φ2, zφ′)

2 − α

2
√
2

(
L2φ2, zψ0

)
2

+ κ0κ1

2
‖φ′‖2. (5.50)

Using (4.74), (4.75) and (4.25) we expand P2A1 as

P2A1 = κ0κ1zφ′′ − ακ1g ′′(φ)zφ′ + φ′∆sκ0 − κ0G′′′(φ)φ2φ
′

+ α
‖φ′‖2√

2
G′′′(φ)φ2ψ0 + O(ε). (5.51)
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Projecting onto ψ1 we obtain

(P2A1, ψ1)2 = ‖φ′‖2

(
∆sκ0 − κ0κ1

2

)
− κ0

‖φ′‖2

(
G′′′(φ)(φ′)2, φ2

)
2

+ α√
2

(
G′′′(φ)φ′ψ0, φ2

)
2 . (5.52)

We use (A.4) and (A.6) on the second inner product to write
G′′′(φ)(φ′)2 = 1

2 L
2(zφ′), while (A.5) and (A.7) applied to the third

term shows that G′′′(φ)φ′ψ0 = 1
2 L

2(zψ0) + O(ε). Using these
identities in (5.52) and using that result and (5.50) in (5.47) we
obtain

R̃31 = ‖φ′‖2∆sκ0 − κ0

‖φ′‖2

(
L2φ2, zφ′)

2 + O(ε). (5.53)

Returning to the definition, (4.80), of φ2, we expand P1A1 and
neglect terms that are odd about z = 0 to obtain

L2φ2 = −π̃

(

κ1Lzφ′ + κ2
0φ

′′ + α2

[

g ′(φ)g ′′(φ)

− 2g ′′′(φ)g(φ)

]

+ p′
2(φ)

)

. (5.54)

It is straightforward to compute that

π̃zφ′ = zφ′ + ρz(α)ψ0, (5.55)
and hence

(
Lzφ′, π̃zφ′)

2 = −‖φ′‖2
2 + O(ε) and

(
π̃φ′′, zφ′)

2 =
− 1

2‖φ′‖2 + O(ε). Combining this with (4.61) we have
(
p′
2(φ), π̃zφ′)

2 = (∂zp2(φ), z)2 + ρz(α)
(
p′
2(φ), ψ0

)
2

= −p2(φ) + 2ρz(α)p2(φm)

‖φ′‖2
+ O(

√
ε). (5.56)

Combining these relations with (5.53), we obtain

R̃31

‖φ′‖2
=

(
∆s − κ1 − 1

2
κ2
0

)
κ0 − κ0

‖φ′‖2
2

(

p2(φ) − 2ρzp2(φm)

‖φ′‖2

+ α2 (
2g ′′′(φ)g(φ) − g ′′(φ)g ′(φ), π̃zφ′)

2

)

. (5.57)

We expand π̃zφ′ according to (5.55) and from (4.25) and (4.35) we
find that the term

(
g ′(φ)g ′′(φ), ψ0

)
2 = O(ε) is a lower order, and

moreover
(
g ′′(φ)g ′(φ), zφ′)

2 = 1
2

(
∂z(g ′(φ))2, z

)
2 = −1

4
‖φ′‖2

2. (5.58)

From (4.23) we have the expansion

(g ′′′(φ)g(φ), ψ0)2 = −
√
2γ0

‖φ′‖2
+ O(ε), (5.59)

while observing that g(s)g ′′′(s) = ∂s
(
g(s)g ′′(s) − 1

2 (g
′(s))2

)
we

write∫

R
g(φ)g ′′′(φ)zφ′ dz

=
∫

R
z ∂z

(
g(φ)g ′′(φ) − 1

2
(g ′(φ))2

)
dz, (5.60)

= −
∫

R
g(φ)g ′′(φ) − 1

2
(g ′(φ))2 dz, (5.61)

= 1
4
‖φ′‖2

2 −
∫

R
g(φ)φ′′ dz + O(ε), (5.62)

= 1
4
‖φ′‖2

2 +
∫

R
g ′(φ)(φ′)2 dz + O(ε)

= 1
4
‖φ′‖2

2 + 1√
2
‖φ′‖3

3 + O(ε), (5.63)

where we used g ′′(φ) = G′(φ) + O(ε) = φ′′ + O(ε) to arrive at
(5.62). Inserting these reductions into (5.46) and (5.57) yields the
form of the normal velocity

Vn =
(

∆s − β(α) − κ1 − 1
2
κ2
0

)
κ0 + O(ε), (5.64)

where the α dependent coefficient β is defined by

β(α) = 1
‖φ′‖2

2

(
p2(φ) − ρz(α)p2(φm)

‖φ′‖2

+ α2

(
5‖φ′‖2

2

4
+ 4‖φ′‖3

3√
2

− 2
√
2γ0ρz(α)

‖φ′‖2

))

. (5.65)

We deduce properties of β in the lemma below.

Lemma 5.1. The coefficient β has the asymptotic form

β(α) = −η2 + α2

(
5
4

+ µ2
−

γ1‖φ′‖2
2
Mb(α) + 4‖φ′‖3

3√
2‖φ′‖2

2

− 3
√
2γ0

‖φ′‖3
2

ρz(α)

)

+ O(ε). (5.66)

In particular

lim
α→α+∗

β(α) = −η2 + O(ε) < 0, (5.67)

while there exists αc > 0 such that β(α) > 0 for α > αc , and β has
at least one zero for α ∈ (α∗, αc).

Proof. Writeβ = (βp+α2βg)‖φ′‖−2
2 whereβp represents the first

two terms on the right-hand side of (5.65) which involve p2 and βg
represents the inner products which involve g . From (4.11) we see
that

p2(φ) = p20(φ)b2 + p21(φ)η2 + O(ε). (5.68)

SinceW = G+O(ε), wemay use the relationsW ′(φ) = φ′′ +O(ε)
and W (φ) = 1

2 (φ
′)2 + O(ε), to eliminate W (φ) and W ′(φ),

obtaining

p20(φ) = µ−

∫

R
φ′′ − µ−(φ − b) dz + O(ε) = −µ2

−Mb(α)

+O(ε). (5.69)

Similarly we find

p21(φ) =
∫

R

1
2
φ′′(φ − b) − 1

2
|φ′|2 dz + O(ε)

= −‖φ′‖2
2 + O(ε). (5.70)

Combining these results with the equilibrium value of b2 given in
(5.34) yields

p2(φ) = µ2
−

γ1
Mb(α)α2 − ‖φ′‖2

2η2 + O(
√

ε). (5.71)

From (4.18) and (5.34) the equilibrium value of p2(φm) takes the
form

p2(φm) =
√
2µ+ g(b+)α2 + O(

√
ε). (5.72)

We combine (5.71) and (5.72) to obtain

βp = α2
(

µ2
−

γ1
Mb(α) − ρz(α)

√
2µ+g(b+)

‖φ′‖2

)
− ‖φ′‖2

2η2

+O(
√

ε). (5.73)
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Fig. 5.2. (Left) The parameter β verses α calculated from (5.65) for a double well
potentialW (s) = (1−s2)2/4, ε = 0.02, b2 given by the equilibrium relation (4.63),
and values of η2 = 1, 2, 4, 8, 16 which yield the curves from highest to lowest.

Combining this expression with (5.65) we obtain (5.66). Using the
results of Lemmas A.3 and A.4, we see that Mb and ρz have loga-
rithmic singularities as α → α+

∗ = O(ε), however these are dom-
inated by the α2 prefactor, and we obtain (5.67). From Lemma A.4
we see that bothMb and ρz are positive but decrease with increas-
ing α. In particular, for α sufficiently large, independent of ε, we
have the lower bound β(α) ≥ −η2 + cα2, for a c > 0 also inde-
pendent of ε. Taking αc >

√
η2/c shows that β > 0 for α > αc .

(see Fig. 5.2) !

5.3. Coupled evolution

The normal velocity couples to the tilt parameter α through the
parameter β in (5.64). The evolution of the curve shape couples
back to α through (5.38). The interfacial surface area |Γ | evolves
according to a curvature weighted integral of the normal velocity,

˙|Γ | =
∫

Γ

Vnκ0 ds. (5.74)

Substituting (5.64) and integrating the Laplace–Beltrami operator
by parts over the closed curve Γ we obtain

˙|Γ | =
∫

Γ

−|∇sκ0|2 −
(

β + κ1 + 1
2
κ2
0

)
κ2
0 ds. (5.75)

The relation between κ0 and κ1 is in general complicated. However
for a single, radially symmetric interface, then each curvature ki =
1/R where R is the radius of Γ , so that κ0 = d−1

R , κ1 = − d−1
R2 , and

moreover Ṙ = Vn. For this case we have the simple expression

˙|Γ | = −Sd
(

β + (d − 1)(d − 3)
2R2

)
(d − 1)2Rd−3, (5.76)

where Sd is the surface area of the unit ball inRd. The radius evolves
according to the coupled system

Ṙ = −
(

β(α) + (d − 1)(d − 3)
2R2

)
d − 1
R

, (5.77)

Mb(α) = m0

SdRd−1 . (5.78)

For d /= 3 the unique equilibrium is determined by solving

R =
√

(d − 1)(d − 3)
2β(α)

, (5.79)

coupled to (5.78). In particular the equilibrium occurs for anα with
β(α) > 0 for d = 2 and with β(α) < 0 for d ≥ 4. In R3,
the equilibrium occurs for β(α) = 0 with associated radius R =
(m0/Mb(α)/S3)

1
3 , so that the equilibrium value of the detuning

parameter, and consequently the bi-layer width is independent of
the initial mass parameter,m0.

5.4. Two-dimensional results

As for the front-type interfaces, the normal velocity may be re-
written in terms of the curvature, which in R2 takes the form

∂τ κ0 +
(∫ s

0
Vnκ0(s) ds

)
∂sκ0

= −
(
∂2
s + κ2

0
)
(

∂2
s − β + 1

2
κ2
0

)

κ0 + O(ε). (5.80)

5.4.1. Stability of radially symmetric solutions
To address the stability of this stationary solution with respect

to non-radial perturbations, we consider a surface Γ ⊂ R2 whose
curvature is a small perturbation from a constant value, κ0 =
κ0 + v(s, τ ), where κ solves Vn(κ) = 0 and ‖v‖L∞(Γ ) " 1. To
determine the linearized equation we must address the variation
of the equilibrium relation α = α(|Γ |), given by (5.38), with re-
spect to κ0. By the chain rule we have may define the variational
derivative of β with respect to perturbations to κ0,

δβ

δκ0
(κ0) = ∂β

∂α

∂α

∂|Γ |
δ|Γ |
δκ0

. (5.81)

However, eigenfunction perturbations of a circular curve κ0 = κ

satisfy δ|Γ |
δκ0

= 0 and the associated eigenvalue problem for v =
eµtψ(s), reduces to

µψ = −
(
∂2
s + κ2

0
)2

ψ . (5.82)

As in the analysis of the front-type solution, (3.40), the eigenfunc-
tions are of the form ψn(s) = eiξns, where ξn = nκ0, for n =
±2, ±3, . . . , and the associated eigenvalues are

µn = −κ4
0
(
−n2 + 1

)2
. (5.83)

The eigenvalues are all negative for n ≥ 2, and the radially sym-
metric curve solution is linearly stable to non-radial perturbations.

5.4.2. Meander Patterns
The evolution Eq. (5.80) also possesses interesting non-radial

stationary solutions. Solving Vn = 0 for κ0 yields the leading-order
expression,

∂2
s κ0(s) = βκ0 − 1

2
κ3
0 . (5.84)

This second order equation is Hamiltonian, with conserved
quantity

E(∂sκ0, κ0) = 1
2
|∂sκ0|2 − β

2
κ2
0 + 1

8
κ4
0 . (5.85)

For β > 0 there are two bounded solutions corresponding to E =
0, a homoclinic orbit which arises out of (0, 0), and its negative,
which together form a figure eight in the phase plane. For E > 0
the stationary solutions, κ0(s; E), can be uniquely parameterized
by the value of the energy, E. They form hour-glass shaped periodic
orbits about the homoclinic orbits. The corresponding curve ΓE =
{γ (s)| s ∈ [0, |Γ |]} is determined by κ0 which gives the rate of
change of Γ ’s tangent vector with respect to arc length,

dγ
ds

=
(

− sin(θ(s))
cos(θ(s))

)
, (5.86)

dθ
ds

= κ0(s; c). (5.87)

The initial conditions on γ and θ determine the rigid
body displacement and rotation of ΓE . For a small value of
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Fig. 5.3. (Left–Right) Development of a meander pattern under the ZMFCH equation with η2 = 1 and ε = 0.03. (Far Right) Equal length interfaces Γ integrated from
(5.86)–(5.87) using curvatures κ0(s;H) corresponding to periodic solutions of the 2nd order Eq. (5.84) with β = 1 and three values of E > 0. The smallest value of E
produces an interface which self-intersects, with increasing values of E decreasing the space-filling nature of the interface’s meander.

E the corresponding curve ΓE is self-intersecting. However for
E sufficiently large, depending upon β , the curves do not-
self intersect and form meander patterns which are stationary
equilibria of the evolution system (5.80). Coupling these to the
mass constraint (5.38) yields an algebraic system which can be
solved for E > 0 in terms of the Hamiltonian constant H > 0
in terms of the initial data m0. The meander patterns oscillate
about a straight line, and an exact, closed curve solution can be
obtained in a periodic square of length L which is tuned to match
the spatial periodicity of the particular meander pattern arising
from the algebraic system.

Acknowledgements

The third author acknowledges essential support fromNSFDMS
0707792, DMS 0929189, and DMS 0934568. He also acknowledges
helpful conversations wit Chun Liu when the models were in
their early stages of development. This article was completed
while the third author enjoyed the hospitality of the mathematics
department of the University of Leiden.

Appendix

The linearization Lf of the second order Eq. (3.1) about the
single-layer solution φf enjoys the following properties.

Lemma A.1. The spectrum of Lf near the origin consists of a single
eigenvalue at zero corresponding to the tranlsational eigenfunction
φ′
f . The remainder of the spectrum of Lf is real and uniformly negative.

Moreover the following identities hold,

Lf φ′
f = 0, (A.1)

Lf φ′′
f = W ′′′(φ)

(
φ′
f
)2

, (A.2)

Lf (zφ′
f) = 2φ′′

f . (A.3)

The linearization L of the second order Eq. (4.15) about its
homoclinic solution φ enjoys the following properties.

Lemma A.2. Let φ(z; α) solve (4.15)with G given by (4.12), then the
following equalities hold

Lφ′′ = G′′′(φ)
(
φ′)2 , (A.4)

Lψ ′
0 = G′′′(φ)φ′ψ0 + λ0ψ

′
0, (A.5)

L(zφ′) = 2φ′′. (A.6)

L(zψ0) = 2ψ ′
0 + λ0ψ0 (A.7)

where L linearization of (4.15) about φ given in (4.19).

Proof. The first equality follows from taking partial derivatives
of (4.15) with respect to z while the second equality arises from
taking partial derivative of the eigenvalue equation for ψ0 with
respect to z. The last two equalities follow from expanding the
action of L. !

Lemma A.3. Consider the whiskered mass, Mb ≥ 0, of the pulse
above its background state defined by (5.16). There exists a constant
Mb,0 > 0, independent of α, and b for which

Mb(α) = Mb,0 − (b+ − b−)‖φ′‖2
2

2γ0
ln(α − α∗) + O(

√
ε), (A.8)

for 0 < α − α∗ " ε− 1
2 . In particular Mb is strictly decreasing,

everywhere positive, and has a logarithmic singularity as α → α+
∗ .

Proof. Taking the α derivative ofMb we see from (4.40) and (4.43)
that Mb is strictly decreasing in α,

dMb

dα
=

∫

R
∂αφ + ε2(∂bφ − 1)∂α b̂2 dz = −ψ0ρα + O(ε) < 0.

(A.9)

Moreover, from (4.26) we have

ψ0 = − 2
√
2

‖φ′‖2

∫ ∞

0
φ′ dz + O(

√
ε) = 2

√
2(b+ − b−)

‖φ′‖2

+O(
√

ε), (A.10)

so that

dMb

dα
= − (b+ − b−)‖φ′‖2

2

2(α − α∗)γ0
+ O(

√
ε), (A.11)

from which we deduce (A.8). The positivity ofMb follows from the
fact that φ > b everywhere. !

Lemma A.4. Consider the inner product ρz(α) ≥ 0 defined by (5.22).
There exists a constant ρz,0 > 0, independent of α and b such that

ρz(α) = ρz,0 − ρα,0 ln(α − α∗) + O(ε), (A.12)

for 0 < α − α∗ " ε−1.

Proof. First observe that

zψ0 = − |z|φ′

‖φ′‖2
+ O(ε). (A.13)

Taking the α derivative and using (4.40) yields

z∂αψ0 = ρα

‖φ′‖2
|z|ψ ′

0 + O(ε). (A.14)
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Taking the α derivative of ρz(α) and using the two results above
yields

∂αρz(α) = −(z∂αφ′, ψ0)2 − (φ′, z∂αψ0)2

= ρα

(
(zψ ′

0, ψ0)2 − 1
‖φ′‖2

(φ′, |z|ψ ′
0)2

)
+ O(ε). (A.15)

However |z|φ′ = −z|φ′| = −z‖φ′‖2ψ0 + O(ε) and we obtain

∂αρz(α) = 2ρα(zψ ′
0, ψ0)2 + O(ε) = − ρα,0

α − α∗
+ O(ε). (A.16)

Integrating (A.16) in α yields (A.12). !
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