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a b s t r a c t

The strong functionalized Cahn–Hilliard equation models self assembly of amphiphilic polymers in
solvent. It supports codimension one and two structures that each admit two classes of bifurcations:
pearling, a short-wavelength in-plane modulation of interfacial width, and meandering, a long-
wavelength instability that induces a transition to curve-lengthening flow. These two potential
instabilities afford distinctive routes to changes in codimension and creation of non-codimensional
defects such as end caps and Y -junctions. Prior work has characterized the onset of pearling, showing
that it couples strongly to the spatially constant, temporally dynamic, bulk value of the chemical
potential. We present a multiscale analysis of the competitive evolution of codimension one and two
structures of amphiphilic polymers within the H−1 gradient flow of the strong Functionalized Cahn–
Hilliard equation. Specifically we show that structures of each codimension transition from a curve
lengthening to a curve shortening flow as the chemical potential falls through a corresponding critical
value. The differences in these critical values quantify the competition between the morphologies of
differing codimension for the amphiphilic polymer mass. We present a bifurcation diagram for the
morphological competition and compare our results quantitatively to simulations of the full system
and qualitatively to simulations of self-consistent mean field models and laboratory experiments. In
particular we propose that the experimentally observed onset of morphological complexity arises from
a transient passage through pearling instability while the associated flow is in the curve lengthening
regime.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Amphiphilic molecules are increasingly important in synthetic
chemistry where they permit molecular level control of the self
assembly of materials with desirable ionic and electronic con-
duction properties, [1]. A molecule is amphiphilic with respect
to a solvent if it is comprised of two components, one of which
has an energetically favorable or hydrophilic interaction with
the solvent and the other with an energetically unfavorable or
hydrophobic interaction. There is a growing literature for the con-
struction and characterization of amphiphilic diblock polymers
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comprised of polymer chains formed from adjustable lengths
of hydrophilic and hydrophobic polymers covalently bonded to-
gether. Amphiphilic molecules are typically characterized by the
Flory–Huggins parameters indicating the strength of the hy-
drophobic/hydrophilic interactions and by the aspect ratio of the
two components, [2].

When immersed in solvent, amphiphilic polymers self assem-
ble into a wide variety of structures with diverse morphologies
that include codimension one bilayers (hollow vesicles), codi-
mension two filaments (solid rods or cylinders), codimension
three micelles (solid spheres), and various defect structures with
no well defined codimension such as end-caps, ‘‘Y’’ junctions, and
mixed morphologies. The bifurcation structure of these mixtures
has been experimentally investigated for a variety of different
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diblock structures. Two seminal experiments, presented in Fig. 1,
have partially unfolded this bifurcation structure by studying the
impact of varying the solvent blend to modify strength of the
amphiphilic interaction, [3], and of varying the aspect ratio of am-
phiphilic polymer, [4]. Increasing the strength of the amphiphilic
interaction and decreasing the aspect ratio of the minority phase
produce similar results: a sequence of bifurcations in which
codimension-one bilayers yield to codimension-two filaments
which yield in turn to codimension-three micelles. In some exper-
iments these codimensional structures are reported to coexist for
a range of parameter values while others show regions of ‘‘mor-
phological complexity’’ characterized by an abundance of defects.

In this paper we analyze the coexistence, bifurcation, and
longtime evolution of well-separated, defect free, codimension
one and two structures within the context of the H−1 gradient
flows of the strong scaling of the Functionalized Cahn–Hilliard
free energy. We use multiscale analysis to derive the curva-
ture driven evolution of codimension one and codimension two
structures that are sufficiently far from self intersection. We
show that the evolution of morphologies of distinct codimension
couples through their exchange of amphiphilic molecules with
the bulk. The bulk chemical potential is spatially constant and
varies temporally on a slow time scale. Most significantly, codi-
mension one and two structures switch between a regularized
curve lengthening and a curve shortening evolution as the bulk
chemical potential passes through critical values. This dichotomy
presents a mechanism for morphological competition in which
structures of one codimension grow at the expense of the other.
This suggests that, in the absence of defects, the coexistence
of structures with distinct codimensions is not generic however
the resolution into structures of homogeneous codimension may
require a substantial transient. This finding is supported by ex-
perimental results, see [5], which report that transient structures
can persist for months.

There are two mechanisms for a codimension one or two
structure to develop an initial defect: self intersection and
pearling. Pearling bifurcations are high-frequency tangential
modulations of the width of the codimensional structure. In a
companion paper, [6], we characterized the onset of the pearling
bifurcation, showing that within the strong scaling of the func-
tionalized Cahn–Hilliard free energy the onset of pearling is
independent of the shape of the codimension one or two struc-
ture, but couples to the transient value of the bulk chemical
potential. Self intersections can be non-local, arising when the
initial intersection points are well separated in distance measured
along the curve, as in a Fig. 8 intersection. They can also be
local, as arises when a surface develops large curvatures, such as
when the radius of a sphere tends to zero. In both cases the self
intersections arise from the evolution of the underlying manifold
that characterizes the structure. Curve-shortening flows render
the manifold smaller and drive their curvatures towards constant
values. Conversely, curve lengthening flows act like backward
heat equations for the interfacial curvature and are well known
to be locally ill-posed. We derive a regularized curve length-
ening flow that includes a higher-order surface diffusion. The
regularized curve lengthening is locally well posed evolution, but
causes the underlying curve to grow and ‘‘meander’’ or buckle,
and typically leads to finite-time non-local self intersections. In
both cases the finite-time singularities can be arrested by the
quenching element of the flow which slows the normal velocity
as the far-field chemical potential approaches an equilibrium
value. Depending upon initial conditions, our results can pre-
dict either a relaxation to an equilibrium state or provide the
mechanisms for the generation of defect states.

Our analysis is particularly relevant to the study of morpholo-
gies derived from casting processes in which an initial suspension

of amphiphilic molecules, reflecting a high bulk chemical po-
tential, nucleates out structures of various codimension which
initially grow, absorbing the amphiphilic molecules from the bulk
suspension and lowering the bulk chemical potential. As the
chemical potential falls it may trigger or inhibit pearling bifurca-
tions in one or both codimensions, or trigger transitions from the
regularized curve lengthening to curve shortening. We compare
our asymptotic results to simulations of the full system, to sim-
ulations of self-consistent mean-field density functional models
of amphiphilic polymer melts, and to experimental bifurcation
diagrams.

1.1. The functionalized Cahn–Hilliard free energy

The Functionalized Cahn–Hilliard (FCH) free energy models
the free energy of a binary mixture of an amphiphilic molecule
and a solvent. It supports stable network morphologies including
codimension one bilayers and codimension two filaments as well
as pearled morphologies and the defects such as end-caps and
Y -junctions, [7–11]. The FCH free energy takes the form

F(u) :=

∫
Ω

1
2

(
ε2∆u − W ′(u)

)2
− εp

(
ε2η1

2
|∇u|2 + η2W (u)

)
dx,

(1.1)

where W is a smooth double-well potential with local minima
at u = b± with b− < b+. The two wells have unequal depths
that are normalized so that W (b−) = 0 > W (b+) and the left
well is non-degenerate in the sense that α− := W ′′(b−) > 0.
The value of α− is a key parameter that controls the rate of
exchange of amphiphilic molecules between the bulk and the
various morphologies. Here ε ≪ 1 is small parameter corre-
sponding to the ratio of length of the amphiphilic molecule to
the domain size, u = b− is associated to a bulk solvent phase,
while the quantity u−b− > 0 is proportional to the density of the
amphiphilic phase. The first term in the integrand of (1.1) is called
the Willmore or the quadratic term, as it denotes the square of
a variational derivative of a Cahn–Hilliard type free energy. The
quadratic term is positive, and we refer to the class of u ∈ H2(Ω)
for which the residual of the quadratic term is small compared to
ε as morphologies. The second grouping of terms in the integrand,
multiplied by εp, is called the functionalization terms. The strong
and weak scalings of the FCH free energy correspond to the choice
p = 1 and p = 2, respectively in (1.1) and represent two
natural choices of distinguished limits between the residual of
the quadratic term and the typical scaling of the functionalization
terms. In the strong scaling of the FCH, the O(ε) functionalization
terms typically dominate the generically O(ε2) residuals from the
quadratic terms, in the weak scaling both terms balance at O(ε2).
The analysis of this paper focuses on the strong scaling of the FCH
free energy for which the bifurcation analysis is more accessible.

The functionalization parameters η1 and η2 characterize key
properties of the amphiphilic molecules. Specifically η1 > 0
models the strength of the hydrophilic interaction, modeling
the propensity of amphiphilic molecules to form monolayers by
rewarding increases in interfacial area or curve length with a
decrease in free energy. The parameter η2 ∈ R encodes the aspect
ratio of the amphiphilic molecule, as discussed in Section 4.3.
Equivalently these parameters are analogous to the surface and
volume energies typical of models of charged solutes in confined
domains, see [12] and particularly equation (67) of [13]. With
these parameter choices the minus sign in front of the func-
tionalization terms has great significance — it incorporates the
propensity of the amphiphilic surfactant phase to drive the cre-
ation of interface. Indeed, experimental tuning of solvent quality
identifies molecular level phase separation and self assembly in
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Fig. 1. Morphological bifurcation diagrams for two classes of amphiphilic polymers in solvent. (left) Morphology of Polystyrene (PS)–Polyacrylic acid (PAA) diblocks as
function of increasing water content in water–dioxane solvent blend (horizontal axis) and polymer %-weight fraction of the overall mixture (vertical axis). Increased
water volume fraction drives bifurcation to lower codimensional morphologies without inducing pearling. From [3]. Reprinted with permission from AAAS. (right)
Morphology of amphiphilic Polyethylene oxide (PEO)–Polybutadiene (PB) diblock suspension as function of the PEO weight fraction, wPEO (horizontal axis) for molecular
weights of PB fixed at NPB = 45 and 170 (vertical axis). Defect loaded phases are observed for the higher value of NPB . Images of polymer morphologies are included
inset, as well as schematic representations of codimension one, two, and three morphologies and ‘Y’ junctions. From [4]. Reprinted with permission from AAAS.

amphiphilic mixtures with the onset of negative values of surface
tension in mesoscale agglomerates, [14] and [15].

Prior work on FCH gradient flows has focused on the weak
scaling, corresponding to p = 2 in (1.1). In [9] the authors de-
rived the geometric evolution of bilayers at the quenched mean-
curvature flow on the O(ε−1) time scale and as a surface area
preserving Willmore flow on the O(ε−2) time scale. The geometric
evolution of codimension two structures was derived in [16], ob-
taining a curvature driven competitive geometric evolution of the
filament curve on the O(ε−1) time scale and a length-preserving
Willmore type flow on the O(ε−2) time scale. Moreover, it was
found that the codimension one and two structures can co-exist
on the faster O(ε−1) time scale in the weak FCH, but compete on
the longer O(ε−2) time scale. However, rigorous investigation of
the pearling bifurcation in the weak FCH is complicated by its
leading order coupling to the curvature of the underlying curves.
Conversely in the strong scaling of the FCH, the pearling bifurca-
tion is independent of morphology and was rigorously character-
ized in [6] for a wide class of codimension one and two structures.

In the remainder of this paper we consider the strong scaling
of the FCH free energy. Fixing Ω = [0, L]d ⊂ Rd for d = 2, 3, . . .
and applying periodic boundary conditions to H4(Ω), the first
variation of F , also called the chemical potential µ, associated to
a spatial distribution u ∈ H4(Ω) takes the form

µ :=
δF
δu

(u) = (ε2∆− W ′′(u) + εη1)(ε2∆u − W ′(u)) + εηdW ′(u),

(1.2)

where ηd := η1 − η2. The Functionalized Cahn–Hilliard equation
is the associated H−1 gradient flow,

ut = ∆µ(u), (1.3)

supplemented with periodic boundary conditions on Ω . The
choice of the H−1 gradient is a reflection of its status as the
simplest local gradient that preserves mass. The mathematical
focus of the paper is on the multiscale analysis of the evolution
codimension one and two structures. On the O(ε−1) time scale we
find that the H−1 gradient flow drives well separated filament
and bilayer structures through a competitive, mean-curvature

driven flow mediated through the common value of the spatially
constant far-field chemical potential, µ1 defined in (2.17). We
show in Section 2 that the nonlocal Mullins–Sekerka problem
familiar to Cahn–Hilliard evolution is present but is unforced, and
on the long time scales we consider the far-field chemical poten-
tial relaxes to a trivial, spatially-constant for both codimension
one bilayer and codimension two filament morphologies. As a
consequence, the geometric evolution is local.

While spatially constant, the far-field chemical potential µ1 =

µ1(t), is temporally dynamic and is linearly proportional to the
density of free amphiphilic molecules in the bulk. It serves as
a key bifurcation parameter, triggering two potential types of
instability for each codimension of morphology. Indeed, in [17]
it is shown for the FCH free energy that the pearling and self
intersection via geometric motion are the only possible mecha-
nisms to generate defects in bilayers. In the companion paper, [6],
a sharp condition for pearling stability is derived that relates
the chemical potential to the parameter ηd and constants that
depend implicitly on the form of the double-well W . Specifically
the bilayers are stable with respect to the pearling bifurcation if
and only if

µ1Sb + ηdλb,0
ψb,0

2
2 < 0, (1.4)

and similarly filaments are pearling stable if and only if

µ1Sf + ηd

(ψ ′

f ,0,0

2
LR

+ λf ,0,0
ψf ,0,0

2
LR

)
< 0, (1.5)

where λb,0 is the ground-state eigenvalue of the linear oper-
ator Lb,0, defined in (2.7), with eigenfunction ψb,0, and λf ,0,0
is the ground state eigenvalue of the linear operator Lf ,0,0, de-
fined in (3.16), with the corresponding eigenfunction ψf ,0,0. The
constants Sb, Sf are the shape factors of the bilayers and the
filaments, respectively, defined by the relations

Sb :=

∫
R
Φb,1W ′′′(φb)ψ2

b,0 dz,

Sf := 2π
∫

∞

0
Φf ,1W ′′′(φf )ψ2

f ,0,0 RdR. (1.6)

Here φb and φf are the bilayer and filament profiles, defined
in (2.6) and (3.10), while Φb,1 and Φf ,1, defined in (2.8) and
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(3.17), encode the impact of a change in chemical potential on
the shape of the bilayer and filament, respectively. For each
codimension, if the shape factor is negative then pearling stability
is favored by large (positive) values of µ1, while if it is positive
then pearling stability is favored for small (negative) values of µ1.
In [11] the existence of pearled codimension one circular and flat
equilibrium was demonstrated in R2 for the strong FCH.

1.2. Summary of analytical results

Our main analytical result is the derivation of curvature driven
flow laws valid on slow time τ = εt for codimension one and two
structures embedded in Ω ⊂ R3 via a multiscale analysis. Bilayer
and filament morphologies are defined as dressings of collections
of admissible interfaces and curves, respectively. We consider
an admissible codimension one interface Γb, see Definition 2.1,
with O(1) area and codimension two curve Γf , see Definition 3.1,
with O(ε−1) length. We assume the reaches of these two classes
of surfaces, as defined in (2.2) and (3.4) respectively, are all
disjoint and introduce the composite solution defined in (4.2). The
evolution of these composite solutions under the gradient flow
(1.3) is parameterized at leading order by the triple (Γb,Γf , µ1)
according to their ε-scaled normal velocities

Vb = νb(µ1 − µ∗

b)H0 + εkb∆sH0, (1.7)

Vf = −
[
νf (µ1 − µ∗

f )κ⃗ + εkf ∂2s κ⃗
]
. (1.8)

Here we have introduced the mean curvature H0 and Laplace–
Beltrami operator ∆s of Γb and vector curvature κ⃗ = (κ1, κ2) and
surface diffusion ∂2s of Γf . On this slow time τ = εt , the chemical
potential satisfies

dµ1

dτ
= −

α2
−

|Ω|

[
mb

∫
Γb

νb
(
µ1 − µ∗

b

)
H2

0 − εkb|∇sH0|
2 ds

+ 2πmf ε

∫
Γf

νf
(
µ1 − µ∗

f

)
|κ⃗|

2
− ε|∂sκ⃗f |

2 ds

]
+ O(ε2), (1.9)

where the constants νb > 0, kb > 0, and mb > 0, are defined
in (2.51) while νf > 0, kf > 0, and mf > 0 defined in (3.77).
While the surface diffusion terms are formally lower order, they
are leading order singular perturbations that keep the resulting
flow locally well-posed.

The system (1.7)–(1.9) describes the competitive dynamics
between codimension one and two morphologies. The key critical
values

µ∗

b = −
kb
2νb

(η1 + η2), (1.10)

µ∗

f =
kf
νf
η1, (1.11)

indicate the value of µ1 at which the rates of amphiphilic
molecule insertion and ejection are balanced for bilayers and fila-
ments, respectively. Specifically, if the far-field chemical potential
lies above this number, then structures of the corresponding
codimension will grow. Indeed, the rate of change of the area of
bilayers is given by

∂τ |Γb| =

∫
Γb

VbH0 ds =

∫
Γb

νb(µ1 −µ∗

b)H
2
0 − εkb|∇sH0|

2 ds, (1.12)

with the corresponding expression

∂τ |Γf | =

∫
Γf

Vf · κ⃗ ds =

∫
Γf

νb(µ1 −µ∗

f )|κ⃗|
2
− εkf |∂sκ⃗|2 ds, (1.13)

for the length of the filaments. The competitive dynamics system
provides the leading order evolution so long as the interfaces
remain admissible with disjoint reaches and the µ1-dependent
pearling conditions (1.4)–(1.5) hold. The surface diffusion terms
in (1.7)–(1.8) are relevant to mass balance only if the gradients
of the curvatures become asymptotically large or if µ1 becomes
asymptotically close to one of the critical values µ∗

b or µ∗

f . In
particular, it follows from (1.9) that net growth of bilayers and
filaments corresponds to a decrease in µ1, while large curvature
gradients enhance the ejection rates and increase the value of µ1.

Remark. For the codimension two filament term to contribute to
the evolution of the chemical potential, µ1, at leading order, we
assume that their collective length |Γf | is O(ε−1). Our generic as-
sumption on the codimension one phase is the surface area |Γb| =

O(1), so that both bilayers and filaments occupy an O(ε) volume
fraction. This limits the applicability of the asymptotic results
as the assumption of disjoint reaches becomes non-generic, and
represents a significant caveat in the application of our analytical
results. Since the geometric flow reduction does not apply to mor-
phologies with defects, both a large number of short filaments
or a small number of long filaments complicate the non-self
intersection assumption. Our analysis applies to each disjoint
component of filament morphology separately, and while ε ≪ 1
is small, it is viewed as fixed within the model and need not be
vanishingly small. A more detailed analysis of mass scaling in the
ε → 0 convergence issues for FCH models can be found in [19].

For µ1 > µ∗

b we call the normal velocity (1.7) a regularized
(codimension one) curve lengthening flow and a (codimension
one) curve shortening flow if µ1 < µ∗

b , with similar terminology
for the codimension two flow based upon the sign of µ1 − µ∗

f .
When the structures have a homogeneous codimension, then in
the absence of singularities in the curvature flow, Eq. (1.9) drives
the chemical potential µ1 to the corresponding critical value, µ∗

b
or µ∗

f , and the leading-order term in the geometric flow goes to
zero, and the system is said to be ‘‘quenched’’. To illustrate the
nature of the geometric flow, it is instructive to rewrite it as a
corresponding evolution equation for the curvatures. For codi-
mension one structures in two space dimensions, up to tangential
reparameterization it takes the simple form

∂τH0 = −(∆s+H2
0 )Vb = −(∆s+H2

0 )
(
νb(µ1 − µ∗

b)H0 + εkb∆sH0
)
.

(1.14)

For the curve lengthening regime, the dominant term is a back-
ward heat equation, with a fourth-order regularization and a H3

0
nonlinearity with a negative (stable) coefficient. For the curve
shortening regime, both differential terms are stabilizing, but
the cubic nonlinearity has a positive coefficient that supports
finite time singularity which may be arrested by the fourth order
regularization.

In numerical simulations the curve lengthening flows, with
µ1 > µ∗

b,f show distinct regimes. For positive but O(ε) values of
µ1−µ∗

b the bilayer interfaces will bend and buckle at O(1) length
scales, leading to shapes reminiscent of a meandering river. This
regime is called a ‘‘meandering flow’’, and is studied rigorously
in [20]. For O(1) positive values of µ1 −µ∗

b the curve lengthening
flows can lead to growth of high-curvature regions which self
intersect on a τ = O(1) length scale. For filaments this can lead
to the formation of many closed loops, see Figures 2 and 3 of [4]
for experimental examples or Fig. 5 of this article for an example
of meandering motion within the FCH gradient flow.
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Fig. 2. Molecular dynamics simulations of amphiphilic molecules with distinct aspect ratios. Increasing the size of the hydrophilic head group, relative to a fixed
tail leads to a preference for morphologies with increasing codimensions: (b) bilayers with edge caps (codim 1), (c) branched filaments (codim 2), (d) unbranched
filaments (codim 2), and (e) micelles (codim 3). Morphologies with higher codimension have a higher density of free-floating amphiphilic molecules in the far-field
(bulk), corresponding to a higher critical value of µ1 .
Source: Reprinted from [18], with permission from Elsevier.

1.3. Competition and morphological complexity

Our main scientific results are the conjectured mechanisms
for the morphological bifurcations observed in the casting of am-
phiphilic suspensions. In particular we propose a mechanism for
the onset of the so-called ‘‘morphological complexity’’ observed
in the experimental casting processes presented in Fig. 1 (right).
In a casting process amphiphilic molecules are dispersed (mixed)
in a solvent and the mixture is allowed to relax, generically
leading to self-assembly of structures with distinct codimension.
For the shorter chains, NPB = 45 corresponding to the lower
horizontal row of symbols, casts from molecules with increas-
ing weight fraction of the amphiphilic PEO component (wPEO –
horizontal axis) lead to a series of codimensional bifurcations
in which the self-assembly prefers structures with increasing
codimension. Indeed experiments produce first bilayers (codi-
mension one) marked (B), then bilayers coexisting with cylinders
(codimension two) marked (B + C), then cylinders, then cylinders
coexisting with spheres (codimension three) marked (S), and
finally spheres. A similar series of codimensional bifurcations are
presented in Figs. 1(left) and 2. In the former the bifurcations
are induced by lowering the percentage of water in the water–
dioxane solvent which forms the basis for the casting. In the
latter they are realized within coarse-grained molecular dynamics
simulations of casting processes by increasing the size of the
hydrophilic head group, and hence the aspect ratio, of a simple
three-group amphiphilic molecule.

We conjecture that the competitive dynamics implicit in the
system (1.7)–(1.9) forms the basis for these codimensional bifur-
cations. In a casting process there is initially a relatively large
density of dispersed amphiphilic molecules, corresponding to
a high value of the far-field chemical potential µ1. As various
structures self-organize, amphiphilic molecules are removed from
the far-field and the scalar value of µ1 falls. The critical values
µ∗

b and µ∗

f , given in (1.10)–(1.11), gauge the relative ability of
the corresponding bilayer and filament morphologies to absorb
and retain amphiphilic molecules from the far-field (bulk) envi-
ronment. The morphology with the lowest corresponding critical
value will, in the absence of defects, lower the value of µ1 and
drain the mass of the morphologies with higher critical values of
µ1. Increasing values of either η1 or η2 will drive µb greater than
µf and trigger a competitive imbalance that favors codimension
two filaments over codimension one bilayers. We argue in Sec-
tion 4 that increasing the aspect ratio of the amphiphilic molecule
corresponds to an increase in the value of η2, while decreasing
the percentage of water within the water–dioxane solvent blend

corresponds to an increase in the value of η1. These produce
shifts in µ∗

b,f in agreement with bifurcation from codimension
one to codimension two. The coexistence of codimension one
and two structures for large parameter ranges are not supported
by the analysis. However the time scale to reach equilibrium
can be quite long, [5] suggest times on the order of months,
and we propose that longer experimental trials may decrease
the size of the regions of coexistence. We do not present an
analysis of codimension three micelles within this work as they
do not have a spatially extended direction that can accommodate
incremental growth, rather simulations suggest that they swell,
form dumbbell shapes, and then break into distinct micelles. This
behavior is outside the scope of our analysis.

For the longer NPB = 170 chains in Fig. 1(right), increasing
wPEO one finds that the codimensional bifurcation structure is
interrupted by the onset of so-called ‘‘morphological complex-
ity’’. Specifically, the casting sequences yield bilayers, bilayers
coexisting with branched filaments, strongly connected network
morphologies, and Y -junction dominated filaments, before re-
verting to the familiar codimension two and codimension three
structures. The term morphological complexity refers not only to
the wide variety of possible outcomes, but also to the difficulty in
controlling the outcomes, see [4] and [5]. Our second conjecture is
that morphological complexity arises from the interplay between
the pearling bifurcation, the competitive dynamics, and the evolv-
ing value of µ1. Indeed, the criteria for pearling stability depends
upon the value of µ1, see (1.4) and (1.5), and as µ1 deceases
during the casting it may trigger or inhibit pearling stability. In
particular, in Section 4.4.2 we present regimes in which bilayers
have a competitive advantage over filaments, but are transiently
pearling unstable, while filaments are globally pearling stable.
This cascade of bifurcations provides mechanisms to produce
complex blends of defects and morphologies and affords a clear
mechanism for hysteresis. In such an environment the ultimate
outcome of a given casting process could depend sensitively on
secondary effects such as the rate at which amphiphilic molecules
are initially added to the dispersion or upon spatial inhomo-
geneities. The spatial complexity of the end states in this regime
is born out both by experiments and by simulations of the FCH
free energy, see Fig. 10 (center and right).

We emphasize that the morphological complexity conjecture
encompasses structures with codimensional defects that are out-
side of our analysis. Moreover, the pearling bifurcation cannot
be robustly suppressed within the FCH gradient flows. The ex-
periments and simulations exhibiting the simple codimensional
bifurcation route do not display signs of pearling bifurcation.
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In particular there is no mechanism within the FCH energy to
explain why pearling would be expressed in longer polymers
and inhibited in shorter but otherwise identical polymers. These
limitations of the model are expanded upon in the discussion of
Section 5. In [21] and [22] two-component extensions of the FCH
are proposed which possess more detailed internal layer struc-
ture and afford precise mechanisms to robustly inhibit pearling
bifurcations.

In Sections 2 and 3, respectively, we apply a multiscale analy-
sis to derive the long time-scale evolution of admissible codimen-
sion one and two structures under the FCH equation. In particular
we extract the coupling of the bulk chemical potential on the
curvature driven flow. In Section 4 we extend these results to
composite morphologies, deriving the laws governing their com-
petitive evolution. We present bifurcation diagrams that show the
regions of pearling stability and curve shortening of each mor-
phology, and compare them to simulations of the FCH equation,
to self consistent mean field density functional theory simula-
tions, and to the experimental bifurcation diagrams presented
in Fig. 1. These are the first results that explicitly quantify the
complexity of the transients associated to amphiphilic polymer
blends and identify the role of the pearling bifurcation in the
generation of complex network morphologies.

2. Geometric evolution of codimension one structures

In this section we derive the geometric evolution of admissible
codimension one interfaces, which we refer to as bilayers. These
calculations are carried out in Rd for d ≥ 2 but we will restrict
our attention to R3 for the analysis of filaments. We consider the
local, mass-preserving H−1 gradient flow of the strong FCH given
in (1.3). The multiscale analysis of this section follows closely
from the calculations of [16], which considered the weak scaling
of the FCH gradient flow. For brevity we present only the main
calculations.

It is well known that for the single-layer interfaces supported
in Cahn–Hilliard type models, that is codimension one interfaces
which separate distinct phases, the O(1) and O(ε−1) time scales
yield Stefan and Mullins–Sekerka problems for the interfacial
motion [23–25]. For single layers motion of the interface requires
transport of materials on either side. For bilayers we derive these
reduced flows, but they have trivial solutions, as the interfa-
cial motion of an interface with the same material on either
side does not require long-range transport but is facilitated by
permeation. The result is a local geometric flow, driven by mem-
brane curvatures and coupled to the bulk value of the chemical
potential.

2.1. Admissible codimension one manifold and their dressings

Given a smooth, closed (d − 1)–dimensional manifold Γb im-
mersed in Ω ⊂ Rd, we define the local ‘‘whiskered’’ coordinates
system in a neighborhood of Γb via the mapping

x = ρ(s, z) := ζb(s) + εν(s)z, (2.1)

where ζb : S ↦→ Rd is a local parameterization of Γb and
ν(s) is the outward unit normal to Γb. The variable z is often
called the ε-scaled, signed distance to Γb, while the variables
s = (s1, . . . , sd−1) parameterize the tangential directions of Γb.

Definition 2.1. For any K , ℓ > 0 the family, Gb
K ,ℓ, of admissible

interfaces is comprised of closed (compact and without bound-
ary), oriented d − 1 dimensional manifolds Γb embedded in Rd,
which are far from self-intersection and with a smooth second
fundamental form. More precisely,

(i) The W 4,∞(S) norm of the 2nd Fundamental form of Γb and
its principal curvatures are bounded by K .

(ii) The whiskers of length 3ℓ < 1/K , in the unscaled distance,
defined for each s0 ∈ S by, ws0 := {x : s(x) = s0, |z(x)| <
3ℓ/ε}, neither intersect each-other nor ∂Ω (except when
considering periodic boundary conditions).

(iii) The surface area, |Γb|, of Γb is bounded by K .

For an admissible codimension one interface Γb the change of
variables x → ρ(s, z) given by (2.1) is a C4 diffeomorphism on
the reach of Γb, defined as the set

Γb,ℓ :=

{
ρ(s, z) ∈ Rd

⏐⏐⏐s ∈ S,−ℓ/ε ≤ z ≤ ℓ/ε

}
⊂ Ω, (2.2)

with complement Γ̃b,ℓ := Ω\Γb,ℓ. On the reach we may expand
the Cartesian Laplacian in terms of the Laplace–Beltrami operator
∆s and the curvatures,

ε2∆x = ∂2z + εH0(s)∂z + ε2(zH1∂z +∆s) + O(ε3), (2.3)

where Hi(s) is related to the ith powers of the curvatures

Hi = (−1)i
d−1∑
j=1

ki+1
j , (2.4)

and, in particular, H0 is the mean curvature of Γb. See [9] for more
details.

Definition 2.2. Given an admissible codimension one interface
Γb ∈ Gb

K ,ℓ and f : R → R which tends to constant value f∞ at an
exponential rate as z → ±∞, then we define the H2(Ω) function

fΓb (x) := f (z(x))χ (|z(x)|/ℓ) + f∞(1 − χ (|z(x)|/ℓ)), (2.5)

where χ : R → R is a fixed, smooth cut-off function which takes
values one on [0, 1] and 0 on [2,∞). We call fΓb ∈ L2(Ω) the
dressing of Γb with f ∈ L2(R), and by abuse of notation will drop
the Γb subscript when doing so creates no confusion.

Within the reach Γb,ℓ of an admissible Γb the quadratic term
within the FCH, (1.1), can be re-written in the codimension one
whiskered coordinates system (2.1). Setting the quadratic term
equal to zero, and formally taking the leading order terms in ε
leads to a second-order ODE in z. The bilayer profile φb, is defined
to be the solution of this equation

∂2z φb = W ′(φb), (2.6)

which is homoclinic to the left well b− of W . We denote by
Ub ∈ L2(Ω) the dressing of Γb by φb ∈ L2(R), and introduce the
associated linear operator

Lb,0 := ∂2z − W ′′(φb). (2.7)

This is a Sturm–Liouville operator on L2(R) and has a positive
ground-state eigenvalue λb,0 > 0 with eigenfunction ψb,0 ≥

0 and a translational eigenvalue λb,1 = 0 associated to the
eigenfunction ψb,1 = φ′

b. In addition, we define the functions

Φb,j := L−j
b,01, (2.8)

for j = 1, 2 which converge to a non-zero value at z = ±∞. We
also define their Γb dressings, which are denoted by Φb,1 and Φb,2
by the abuse of notation mentioned above.

2.2. Inner and outer expansions

Assuming initial data arising from the dressing of an admissi-
ble initial codimension one interface Γb(t0) ∈ Gb

K ,ℓ, we describe
the coupled geometric evolution of the interface and the far-field
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chemical potential as a flow in time t . We consider formal, multi-
scale analysis of the density u and the chemical potential µ. In the
far-field or bulk region, Γ̃b,ℓ := Ω\Γb,ℓ, the outer solution u has
the expansion

u(x, t) = u0(x, t) + εu1(x, t) + O(ε2). (2.9)

Within the reach or inner region, Γb,ℓ, we use the whiskered
coordinates with the ε-scaled distance z to the interface. The
standard assumption is that the inner solution ũ is smooth in
the tangential s-variables. However the leading order result is a
curvature driven flow whose coefficient may switch sign. Flow
against curvature is not locally well posed due to uncontrollable
growth in high-frequency growth terms. To regularize this, we
incorporate a two-scale tangential expansion, introducing the fast
tangential variable S := s/

√
ε, so that the inner variable admits

the expansion.

u(x, t) = ũ(s, S, z, τ ) = ũ0(s, S, z, τ ) + εũ1(s, S, z, τ ) + O(ε2).
(2.10)

The inclusion of the fast tangential variable promotes a formally
lower order surface diffusion term to the leading order, where it
regularizes the curve lengthening flow. The normal velocity V =

V (s, S, t) of Γb is denoted by

V (s, S, t) := −ε
∂z
∂t
. (2.11)

On the slow time τ = εt , the time derivative of the inner
density function ũ, defined in (2.10), combined with the normal
velocity, (2.11), takes the form

∂ ũ
∂t

= −ε−1V (s)
∂ ũ
∂z

+
∂ ũ
∂τ

∂τ

∂t
. (2.12)

At the interface we have the standard matching conditions

lim
h→0±

u(x + hν, τ ) = lim
z→±∞

ũ(s, S, z, τ ). (2.13)

which reduce to the relations

u±

0 (x, τ ) = lim
z→±∞

ũ0(s, S, z, τ ), (2.14)

u±

1 (x, τ ) + z∂νu±

0 (x, τ ) = lim
z→±∞

ũ1(s, S, z, τ ). (2.15)

where ∂ν is the derivative in the normal direction of Γb, and u±

i
denote the values of the limits of the left-hand side of (2.13) as
h → 0± respectively.

The chemical potential, µ, defined in (1.2), admits similar
outer and inner expansions. The terms of its outer expansion are
slaved to the density u through the outer relations,

µ0 =W ′′(u0)W ′(u0), (2.16)

µ1 =(W ′′′(u0)u1 − η1)W ′(u0) + (W ′′(u0))2u1 + ηdW ′(u0). (2.17)

For the inner expansion we introduce the nonlinear operators P
and Q to rewrite the chemical potential (1.2) as

µ̃ = P(ũ)Q (ũ) + εηdW ′(ũ). (2.18)

In the multiscale tangential variables the Laplacian expansion
(2.3) takes the form

ε2∆x = ∂2z + ε (H0(s, S)∂z +∆S)

+ ε2(zH1(s, S)∂z + zD2,S +∆s) + O(ε3), (2.19)

where ∆S is the scaled Laplace–Beltrami operator and D2,S de-
notes a higher order elliptic term in S. Details on the D2,S term
can be found in section 6 of [17] however its precise form is
immaterial to our presentation. We combine the expansion of

the Laplacian and the inner solution to obtain an expansion for
P = P0 + εP1 + ε2P2 + · · ·, where

P0 =∂2z − W ′′(ũ0), (2.20)

P1 =H0(s, S)∂z +∆S − W ′′′(ũ0)ũ1 + η1, (2.21)

P2 =zH1(s, S)∂z + D2,S +∆s − W ′′′(ũ0)ũ2 +
1
2
W (4)(ũ0)ũ2

1, (2.22)

and for Q = Q0 + εQ1 + ε2Q2 + · · ·

Q0 =∂2z ũ0 − W ′(ũ0), (2.23)

Q1 =H0∂z ũ0 +∆S ũ0 + (∂2z − W ′′(ũ0))ũ1, (2.24)
Q2 =zH1∂z ũ0 + D2,S ũ0 +∆sũ0 + (H0∂z +∆S)ũ1

+ (∂2z − W ′′(ũ0))ũ2 −
1
2
W ′′′(ũ0)ũ2

1. (2.25)

With these reductions we expand the inner chemical potential as

µ̃0 =P0Q0 (2.26)

µ̃1 =P1Q0 + P0Q1 + ηdW ′(ũ0), (2.27)

µ̃2 =P0Q2 + P1Q1 + P2Q0 + ηdW ′′(ũ0)ũ1. (2.28)

The second order form of the H−1 gradient induces inner–outer
matching conditions for the chemical potential,

µ±

0 (x, t) = lim
z→±∞

µ̃0(z, s, S, t),

(2.29)
µ±

1 (x, t) + z∂νµ±

0 (x, t) = lim
z→±∞

µ̃1(s, S, z, t)

(2.30)

µ±

2 (x, t) + z∂νµ±

1 (x, t) +
1
2
z2∂2νµ

±

0 (x, t) = lim
z→±∞

µ̃2(s, S, z, t).

(2.31)

2.3. Time scale τ = εt: quenched curvature driven flow

We focus on the first relevant slow time-scale, τ = εt , insert-
ing the time derivative and chemical potential expansions into
the FCH gradient flow, (1.3). As the interface Γb is codimension
one, it separates the region Ω into two disjoint sets, Ω\Γb =

Ω+ ∪ Ω− with the normal to Γb pointing towards Ω+. In this
bulk region we obtain the relations

O(1) : 0 = ∆
(
W ′′(u0)W ′(u0)

)
, in Ω− ∪Ω+, (2.32)

O(ε) : u0,τ = ∆
(
(W ′′′(u0)u1 − η1)W ′(u0)

+(W ′′(u0))2u1 + ηdW ′(u0)
)
, in Ω− ∪Ω+. (2.33)

The relevant solution to the O(1) relation is the spatially constant
density, u0 = b− for which µ0 = 0. With this reduction and the
fact that W ′(b−) = 0 and W ′′(b−) := α− > 0, the O(ε) relation
reduces to

0 = ∆u1 in Ω− ∪Ω+, (2.34)

which is subject to interior layer matching and exterior boundary
conditions derived in the sequel.

In the inner region we supplement the expansion (2.10) with
the form of the Laplacian in inner variables, given in (2.3). Col-
lecting orders of ε we find

O(ε−2) : 0 = ∂2z µ̃0, in Γb,ℓ, (2.35)

where µ̃0 is defined in (2.26). This relation is satisfied by ũ0 = Ub,
which is consistent with our choice of initial data corresponding
to the dressing of an admissible bilayer with the bilayer profile.
Modulo this form the next orders in the expansion take the form,

O(ε−1) : 0 = ∂2z µ̃1, in Γb,ℓ, (2.36)

O(1) : − V (s, S)∂z ũ0 = ∂2z µ̃2 + (H0∂z +∆S )µ̃1, in Γb,ℓ, (2.37)
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where µ̃1 and µ̃2 are defined in (2.27) and (2.28) respectively.
With the reduction ũ0 = Ub, the matching condition (2.30)
reduces to the relations ∂zµ̃1 ≈ ∂νµ0 = 0 as z −→ ±∞.
Applying these to (2.36) we find that µ̃1 is independent of z,
i.e., µ̃1 = µ̃1(s, S, τ ). Similarly, we simplify the inner expression
for µ̃1 in (2.27) which yields the expression

ũ1 = µ̃1Φb,2 − ηdL−2
b,0W

′(Ub), (2.38)

where Φb,2 is defined in (2.8). Since µ̃1 is independent of z, the
relation (2.37) reduces to

O(1) : − V (s, S)∂zUb = ∂2z µ̃2 +∆Sµ̃1, in Γb,ℓ. (2.39)

To obtain interfacial jump conditions for µ1 we introduce
Ûb := Ub − b− > 0, and integrate (2.39) twice from 0 to z we
obtain the relation

µ̃2(z) = µ̃2(0) − V (s, S)
∫ z

0
Ûb(t) dt + z

(
∂zµ̃2(0) + V (s, S)Ûb(0)

)
+

z2

2
∆Sµ̃1(s, S). (2.40)

Comparing to the jump condition (2.31), and recalling that µ0 =

0, we deduce that ∆sµ̃1 = 0. Since Γb is closed, this implies
that µ̃1 = µ̃1(s, τ ) is constant in S. Using this information, we
integrate (2.39) with respect to z over R. As Ub is homoclinic we
obtain the relationship

lim
z→∞

∂zµ̃2(z) − lim
z→−∞

∂zµ̃2(z) = 0, (2.41)

which when reported to the matching condition (2.31) yields the
key outer interfacial jump relations

Jµ2K = 0, J∂νµ1K = 0. (2.42)

Coupling these boundary conditions with the elliptic problem
(2.34) typically yields a Mullins–Sekerka problem for the long-
range transport of material; however the homogeneous jump
conditions imply that ∆µ1 = 0 in all of Ω , which subject to the
exterior boundary conditions implies that the far-field chemical
potential, µ1, is spatially constant; however it remains a function
of time.

To extract the normal velocity we return the reduction ũ0 =

Ub to (2.28), so that P0 reduces to Lb,0 and the chemical potential
takes the form

µ̃2 =L2b,0ũ2 − Lb,0Q̃2 + (H0(s, S)∂z +∆S

− W ′′′(Ub)ũ1 + η1)(Lb,0ũ1 + H0(s, S)U ′

b) (2.43)
+ ηdW ′′(Ub)ũ1,

where we have introduced the quantity Q̃2 := Q2 − Lb,0ũ2.
Integrating (2.39) from z = −∞ to z = 0, using the matching
condition (2.31), and recalling that µ1 is constant, ∆Sµ̃1 = 0, and
Ûb → 0 as z → ±∞ yields the expression

V (s, S)Ûb(0) = lim
z→−∞

∂zµ̃2 − ∂zµ̃2(0) = ∂νµ1 − ∂zµ̃2(0)

= −∂zµ2(0). (2.44)

Using (2.44) to replace V (s)Ûb(0) in Eq. (2.40) yields

µ̃2(z) = µ̃2(0) − V (s, S)
∫ z

0
Ûb(t) dt. (2.45)

Replacing µ̃2 in (2.45) with its expression from (2.43) and solving
for L2b,0ũ2 yields an expression for ũ2

L2b,0ũ2 =Lb,0Q̃1 −
(
H0∂z − W ′′′(Ub)ũ1 + η1

) (
Lb,0ũ1 + H0∂zUb

)
− ∆SH0(s, S)∂zUb − ηdW ′′(Ub)ũ1

+ µ̃2(0) − V (s, S)
∫ z

0
Ûb(t) dt. (2.46)

Fixing the values of s and S, this equation has a solution ũ2(s, S, ·)
∈ L2(R) if and only if the right-hand side is perpendicular
to ker Lb,0, which is spanned by ∂zφb. This solvability condition is
enforced by selecting the value of V (s, S). Since the terms in (2.46)
are either functions of z or of s and S, we factor out the functions
of s and S, replace Ub with φb, and take the inner product of (2.46)
with ∂zφb in L2(R). Recalling that ũ1, defined in (2.38), is even in z
and the operator Lb,0 preserves symmetry, parity considerations
reduce the solvability condition to

H0

(
(Lb,0ũ1, ∂

2
z φb)L2(R) + (W ′′′(φb)ũ1, ∂zφb) − η1∥φ

′

b∥
2
L2

)
+ V∥φ̂b∥

2
L2 −∆SH0∥φ

′

b∥
2
L2 = 0. (2.47)

From (2.6) it is easy to verify that

Lb,0
( z
2
φ′

b

)
= φ′′

b , (2.48)

Lb,0φ′′

b = W ′′′(φb)(φ′

b)
2. (2.49)

Using these relations and the form (2.38) of ũ1, the coefficient of
H0 in (2.47) reduces to

(Lb,0ũ1, ∂
2
z φb)L2(R) + (W ′′′(φb)ũ1, ∂zφb) − η1∥φ

′

b∥
2
L2

= (L2b,0ũ1,
z
2
φ′

b)L2 − η1∥φ
′

b∥
2
L2 ,

= µ1mb +
1
2
(η1 + η2) σb.

Returning this reduction to (2.47) and solving for the normal
velocity we find

V (s, S) =
µ1mb +

1
2 (η1 + η2)σb
B1

H0 +
σb

B1
∆SH0, (2.50)

where here and above we have introduced the positive constants

mb :=

∫
R
φ̂b dz > 0, B1 :=

φ̂b

2
L2(R)

, σb :=
φ′

b

2
L2(R) . (2.51)

The sign of the coefficient of H0 is indeterminate, as η2 can be
negative and moreover the bulk chemical potential µ1 varies
temporally. To emphasize this fact we introduce the constants

µ∗

b = −
1
2
(η1 + η2)

σb

mb
, νb :=

mb

B1
, kb :=

σb

B1
,

(2.52)

and return the S variable to its original scaling, obtaining the
regularized curvature driven flow

V (s) = νb
(
µ1 − µ∗

b

)
H0 + εkb∆sH0. (2.53)

To close the system and fully determine the normal velocity
we evoke conservation of mass to specify the temporally vary-
ing value of the bulk external chemical potential, µ1. The mass
balance is determined by the interplay between the length of the
interface Γb and the total mass of amphiphilic material. From the
form of ũ0 and ũ1 in (2.38), we have the composite formulation

u(x, t) = Ub + ε(µ1Φb,2 − ηdL−2
b,0W

′(Ub)) + O(ε2), (2.54)

which has the spatially constant far-field asymptotic value

u(x, t) = b− + ε
µ1

α2
−

+ O(ε2) in Ω\Γb,ℓ, (2.55)

where α− := W ′′(b−) > 0. The gradient flow (1.3) conserves the
total mass,

M :=

∫
Ω

u(x, t) − b− dx =

∫
Ω

u(x, 0) − b− dx. (2.56)
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Using the form of the composite solution, (2.54), we evaluate the
integral over the reach and its complement,

M = ε

∫
Γ̃b,ℓ

µ1

α2
−

dx+
∫
Γb,ℓ

Ûb+ε(µ1Φb,2−ηdL−2
b,0W

′(Ub)) dx+O(ε2).

(2.57)

Since Γb is admissible, its area |Γb| ∼ O(1). Changing to whiskered
coordinates in the localized integral yields

M = ε

(
|Ω|

µ1

α2
−

+

∫
Γb

∫ l/ε

−l/ε
φ̂b dz ds

)
+ O(ε2). (2.58)

Our choice of initial data implies that the mass can be rescaled as
M = εM̂ + O(ε2). We also expand the surface area

|Γb| = γb,0 + εγb,1 + O(ε2). (2.59)

Evaluating the integrals in Eq. (2.58) and solving for µ1 yields the
expression

µ1 =
α2

−

|Ω|

(
M̂ − γb,0mb

)
+ O(ε), (2.60)

where mb is defined in (2.51). On the other hand, the area of a
smooth curve subject to normal velocity V evolves according to

∂|Γb|

∂τ
=

∫
Γb

V (s)H0(s) ds, (2.61)

and for the normal velocity (2.53) this reduces to the result
presented in (1.12). Taking the time derivative of (2.60), using
(2.61) to eliminate d

dτ γb,0, the normal velocity (2.53) drives the
bulk chemical potential according to

dµ1

dτ
= −

α2
−
mb

|Ω|

(
νb(µ1 − µ∗

b)
∫
Γb

H2
0 (s) ds − εkb

∫
Γb

|∇sH0|
2 ds

)
+ O(ε2). (2.62)

The coupled system (2.53) and (2.62) prescribes the interfacial
evolution for the dressing of an admissible codimension one
interface with a shifted bulk value of u given by (2.55).

3. Geometric evolution of codimension two structures

In this section we derive the geometric evolution of admissible
codimension two curves, called filaments, in R3 under the H−1

gradient flow (1.3). As remarked in the introduction, we make the
assumption that the combined length of all the filament curves
scales as O(ε−1) so that the combined mass of the codimension
two structures is O(ε). This gives a comparable mass to filament
and bilayer structures, so they may contribute to the mass bal-
ance at the same order of magnitude. Codimension two structures
are much less studied than codimension one structures, however
our analysis leads to a qualitatively similar result: a surface diffu-
sion regularized curvature-vector driven normal flow that may be
curve lengthening or curve shortening depending upon the value
of the spatially constant far-field chemical potential.

3.1. Admissible codimension two curves and their dressings

Given a smooth, closed, non-self intersecting one-dimensional
manifold Γf immersed inΩ ⊂ R3, and parameterized by the map
s ∈ Sf ↦→ ζf (s) ∈ Ω , we may uniquely decompose points x near
Γf as

x = ρf (s, z1, z2) = ζf (s) + ε (z1N1(s) + z2N2(s)) , (3.1)

where N1(s) and N2(s) are orthogonal unit vectors which are also
orthogonal to the tangent vector ζ ′

f (s), defined by

∂Ni

∂s
= −κiT, i = 1, 2, (3.2)

where

κ⃗(s, t) := (κ1, κ2)t , (3.3)

is the normal curvature vector with respect to {N1,N2
}.

Definition 3.1. For any K , ℓ > 0 the family, Gf
K ,ℓ, of admissible

curves is comprised of closed (compact and without boundary),
oriented 1 dimensional curves Γf embedded in R3, which are far
from self intersection and with a smooth second fundamental
form. More precisely,

(i) The W 4,∞(Sf ) norm of the 2nd Fundamental form of Γf and
its principal curvatures are bounded by K .

(ii) The whiskers of length 3ℓ < 1/K , in the unscaled distance,
defined for each s0 ∈ Sf by, ws0 := {x : s(x) = s0, |z(x)| <
3ℓ/ε}, neither intersect each-other nor ∂Ω (except when
considering periodic boundary conditions).

(iii) The length, |Γf |, of Γf is bounded by K/ε.

For an admissible codimension two curve Γf the change of
variables x → ρ(s, z) given by (3.1) is a C4 diffeomorphism on
the reach of Γf , defined as the set

Γf ,ℓ :=

{
ρ(s, z) ∈ R3

⏐⏐⏐s ∈ S,−ℓ/ε ≤ |z| ≤ ℓ/ε

}
⊂ Ω. (3.4)

where z := (z1, z2). We introduce R(x) = |z(x)| which denotes the
scaled distance of x to Γf . Within the reach the cartesian Laplacian
admits the local form

ε2∆x = ∆z − εκ⃗ · ∇z + ε2(∂2s − (z · κ⃗)κ⃗ · ∇z) + O(ε3), (3.5)

where the lower order terms are immaterial for the analysis. The
Jacobian of the change of variables (3.1) takes the form

J = ε2 − ε2z · κ⃗ . (3.6)

If the underlying curve Γf evolves in time, then its normal veloc-
ity vector V = (V1, V2) of Γf at a point s(t) takes the form

V1 := −ε
∂z1
∂t

+ εz2N2
·
∂N1

∂t
, (3.7)

V2 := −ε
∂z2
∂t

+ εz1N1
·
∂N2

∂t
. (3.8)

The terms z2N2
·
∂N1

∂t and z1N1
·
∂N2

∂t reflect lower-order contribu-
tions to the normal velocity induced by the rotational motion of
the normal vectors to Γf (t). See [16] for further details.

Definition 3.2. Given an admissible codimension two curve Γf ∈

Gf
K ,ℓ and a smooth function f : R+ → R which tends to a

constant value f∞ at an O(1) exponential rate as R → ∞, we
define fΓf ∈ H2(Ω), called the dressing of Γf with f , according
to the rule

fΓf (x) := f (R(x))χ (R(x)/ℓ) + f∞(1 − χ (R(x)/ℓ)), (3.9)

where χ : R → R is a fixed, smooth cut-off function taking values
one on [0, 1], and zero on [2,∞). By abuse of notation we will
drop the Γf subscript when doing so creates no confusion.

Within the reach Γf ,ℓ the Cartesian Laplacian reduces formally
at leading order to the two-dimensional Laplacian in z, which may
be written in turn in polar coordinates in R. We may eliminate the
dominant terms in quadratic component of the (1.1) by taking
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u at leading order to be the dressing of the codimension two
profile φf (R), defined as the solution of

∂2Rφf +
1
R
∂Rφf − W ′(φf ) = 0, (3.10)

subject to the boundary conditions ∂Rφf (0) = 0 and φf → b− as
R → ∞. We denote the dressing of Γf with φf by Uf . As in the
codimension one case, we introduce the operator

Lf ,0 := ∂2R +
1
R
∂R − W ′′(φf ), (3.11)

corresponding to the linearization of (3.10) about φf . The op-
erator Lf ,0 is the radially symmetric reduction of the associated
cylindrical Laplacian,

Lf := ∂2R +
1
R
∂R +

1
R2 ∂

2
θ − W ′′(Uf ). (3.12)

This operator is self-adjoint in the usual R-weighted L2(R+) inner
product,

⟨f , g⟩R :=

∫
∞

0
f (R)g(R)R dR. (3.13)

Moreover, the translational eigenfunctions {φ′

f (R) cos(θ ), φ
′

f (R)
sin(θ )} lie in the kernel of Lf and their associated dressings of Γf
agree with {∂z1Uf , ∂z2Uf } respectively, up to exponentially small
terms. For each m ∈ N, we define the spaces

Zm := {f (R) cos(mθ )+g(R) sin(mθ )
⏐⏐ f , g ∈ C∞(0,∞),m ∈ N}. (3.14)

These spaces are invariant under the operator Lf , and mutually
orthogonal in L2(Ω). Moreover, on these spaces Lf reduces to

Lf (f (R) cos(mθ ) + g(R) sin(mθ )) = cos(mθ )Lf ,mf + sin(mθ )Lf ,mg,

(3.15)

where

Lf ,m :=
∂2

∂R2 +
1
R
∂

∂R
−

m2

R2 − W ′′(Uf ). (3.16)

Each operator Lf ,m is self-adjoint in the R-weighted inner product,
and the operator Lf ,1 has a 1-dimensional kernel spanned by its
ground state ∂Rφf > 0. For m > 1 we observe that ⟨Lf ,mf , f ⟩R <
⟨Lf ,1f , f ⟩R and since Lf ,1 ≤ 0 we deduce that Lf ,m < 0 for m > 1,
and is boundedly invertible. We denote the eigenfunctions and
eigenvalues of Lf ,m by {ψf ,m,j}

∞

j=0 and {λf ,m,j}
∞

j=0, respectively. We
address the kernel of Lf ,0 with the following assumption.

Assumption 1. We assume that the operator Lf ,0 has no kernel
and a one-dimensional positive eigenspace spanned by ψf ,0,0.

With this assumption we may define the functions

Φf ,j := L−j
f ,01, (3.17)

for j = 1, 2 and their Γf dressings, also denoted Φf ,1 and Φf ,2.

3.2. Inner and outer expansions

Considering initial data that is close to a filament dressing of
an admissible curve, Γf (0) ∈ Gf

K ,ℓ, embedded in Ω ⊂ R3. In the
far-field, Γ̃f ,ℓ, the outer solution u has the expansion

u(x, t) = u0(x, t) + εu1(x, t) + ε2u2(x, t) + O(ε3), (3.18)

and within the reach Γf ,ℓ, we incorporate a two-scale tangential
expansion, introducing the variable S =

s
√
ε
, and the inner spatial

expansion takes the form

u(x, t) = ũ(s, S, z, τ ) = ũ0(s, S, z, τ )

+ εũ1(s, S, z, τ ) + ε2ũ2(s, S, z, τ ) + O(ε3). (3.19)

The time derivative of the inner density function ũ, defined
in (3.18), combined with the normal velocity, (3.7), takes the form

∂ ũ
∂t

= −ε−1V · ∇zũ +
∂ ũ
∂τ

∂τ

∂t
. (3.20)

For a whisker identified by s ∈ Sf , with base point x =

ρf (s, 0) ∈ Γf we choose vectors n,m ∈ span{N1,N2
} in the

normal plane of Γf at x, and choose θ so that

n = cos(θ )N1
+ sin(θ )N2. (3.21)

The usual directional derivative along n is denoted

∂n := n · ∇x = cos(θ )N1
· ∇x + sin(θ )N2

· ∇x, (3.22)

and for f ∈ C∞(Ω/Γf ) we introduce the n,m limit

∂ jnf
m(x) := lim

h→0+
(n · ∇x)jf (x + hm, t) for all j ≥ 0, (3.23)

and the limit of the gradient

∇xfm(x) := lim
h→0+

∇xf (x + hm, t), (3.24)

where the limit exists. If f ∈ C1(Ω) then the normal derivative
of f will satisfy

∂nf −m
= ∂nfm. (3.25)

This motivates the following definition of the jump condition.

Definition 3.3. Given a radial function f := f (R) localized on Γf ,
we define the jump of f across a given whisker by

J∂nfmKΓf (x) := ∂nfm(x) − ∂nf −m(x) (3.26)

which is zero when f has a smooth extension through Γf .

With this notation we develop matching conditions

lim
R→0+

u(x + εRn, t) = lim
R→∞

ũ(s, S, R, θ, t). (3.27)

Expanding the left-hand side yields the following expression

u(x + εRn) =un
0 (x, t) + ε

(
un
1 (x, t) + R∂nun

0 (x, t)
)

+ ε2
(
un
2 (x, t) + R∂nun

1 (x, t) +
1
2
R2∂2nu

n
0 (x, t)

)
+ O(ε3), (3.28)

where un
i denotes the limit of the left-hand side of (3.27) as

εR → 0+. Equating orders of ε for the matching condition (3.27)
yields

un
0 = lim

R→∞

ũ0(s, S, R, θ, τ ), (3.29)

un
1 + R∂nun

0 = lim
R→∞

ũ1(s, S, R, θ, τ ). (3.30)

The chemical potential, defined in (1.2) admits similar inner
and outer expansions. The outer expansion is identical to that for
the codimension one case, see (2.16) and (2.17). To obtain the
inner expression for the chemical potential we first note that in
the multiscale tangential variables the Laplacian expression (3.5)
takes the form

ε2∆x = ∆z−ε
(
κ⃗ · ∇z + ∂2S

)
+ε2(∂2s −(z·κ⃗)κ⃗ ·∇z+2z · κ⃗∂2S )+O(ε3),

(3.31)

Introducing the nonlinear operators P and Q , the inner chemical
potential is written as

µ̃(x, t) = P(ũ)Q (ũ) + εηdW ′(ũ0) (3.32)
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where P admits the expansion P = P0 + εP1 + ε2P2 + · · ·, with

P0 = −∆z + W ′′(ũ0), (3.33)

P1 =κ⃗ · ∇z + ∂2S + W ′′′(ũ0)ũ1 − η1, (3.34)

P2 = − (z · κ⃗)κ⃗ · ∇z + 2z · κ⃗∂2S − ∂2s + W ′′′(ũ0)ũ2 +
1
2
W (4)(ũ0)ũ2

1,

(3.35)

and similarly Q = Q0 + εQ1 + ε2Q2 + · · ·, where

Q0 = −∆zũ0 + W ′(ũ0), (3.36)

Q1 =κ⃗ · ∇zũ0 + ∂2S ũ0 +
(
−∆z + W ′′(ũ0)

)
ũ1, (3.37)

Q2 = − (z · κ⃗)κ⃗ · ∇zũ0 − 2z · κ⃗∂2S ũ0 − ∂2s ũ0

+ (κ⃗ · ∇z + ∂2S )ũ1 + (−∆z + W ′′(ũ0))ũ2

−
1
2
W ′′′(ũ0)ũ2

1. (3.38)

With these reductions we expand the inner chemical potential as

µ̃0 =P0Q0 (3.39)

µ̃1 =P1Q0 + P0Q1 + ηdW ′(ũ0), (3.40)

µ̃2 =P0Q2 + P1Q1 + P2Q0 + ηdW ′′(ũ0)ũ1. (3.41)

The relevant matching conditions for the chemical potential ex-
tend to second order in ε:

µn
0 (x, t) = lim

R→∞

µ̃0(s, S, R, θ, t),

(3.42)
µn

1 (x, t) + R∂nµ±

0 (x, t) = lim
R→∞

µ̃1(s, S, R, θ, t),

(3.43)

µn
2 (x, t) + R∂nµn

1 (x, t) +
1
2
R2∂2nµ

n
0 (x, t) = lim

R→∞

µ̃2(s, S, R, θ, t),

(3.44)

3.3. Time scale τ = εt: quenched vector-curvature driven flow

The analysis of the outer expansion of the chemical potential
is identical to the codimension one case, and we find at leading
order that u0 = b−, µ0 = 0, while at O(ε) we obtain

∆xµ1 = 0 in Ω\Γf . (3.45)

In the inner region we supplement the inner expansions (3.19)
and (3.32) with the inner expression of the Laplacian (3.5). At
leading order in ε we find

O(ε−2) : 0 = ∆zµ̃0, in Γf ,ℓ, (3.46)

where µ̃0 is defined in (3.39). This equation is consistent with the
choice of initial data ũ0 = φf which implies that µ̃0 = 0 via the
matching conditions. With this reduction the subsequent orders
become

O(ε−1) : 0 = ∆zµ̃1, in Γf ,ℓ,

(3.47)

O(1) : − V · ∇zũ0 = ∆zµ̃2 −
(
κ⃗ · ∇z + ∂2S

)
µ̃1, in Γf ,ℓ.

(3.48)

where µ̃1 and µ̃2 are defined in Eqs. (3.40) and (3.41), respec-
tively. The combined system (3.45) and (3.47) couples through
the matching condition (3.43). Since µ0 = 0 we deduce from
(3.43) that µ̃1 is bounded as R → ∞, and hence from (3.47) that
µ̃1 is constant in z. In particular µ̃1 = µ̃1(s, S, τ ) ≈ µ1. Since
ũ0 = Uf , Eq. (3.40) for µ̃1 reduces to a linear equation for ũ1,

L2f ũ1 = µ̃1 − ηdW ′(Uf ). (3.49)

By Assumption 1 we know that ker Lf ⊂ ker Lf ,1 ⊂ Z1, defined
in (3.14), while the right-hand side of (3.49) lies in Z0. Since the
spaces Zm are mutually orthogonal, we may solve for ũ1,

ũ1 = µ1Φf ,2 − ηdL−2
f W ′(Uf ), (3.50)

where µ1 is a spatial constant and Φf ,2 is defined in (3.17). With
this simplification equation (3.48) becomes

O(1) : −V · ∇zUf = ∆zµ̃2 − ∂2S µ̃1. (3.51)

To impose interfacial matching conditions for µ̃2 we solve (3.51)
by expanding µ̃2 in (R, θ ) inner-polar coordinates associated to
the spaces {Zm}

∞

m=0 as

µ̃2 = A1(s, S, R) cos θ + B1(s, S, R) sin θ + C̄(s, S, R) + ξ (s, S, R, θ ),
(3.52)

where

ξ (s, S, R, θ ) :=

∞∑
m=2

(Am(s, S, R) cos(mθ ) + Bm(s, S, R) sin(mθ )) .

(3.53)

We observe that

V · ∇zUf = ∂RUf (R) (V1 cos θ + V2 sin θ) ∈ Z1, (3.54)

while ∂2S µ̃1 ∈ Z0. We project (3.51) onto Zm where ∆z = ∂2R +

1
R∂R −

m2

R2
and arrive at the system

∂2RC +
1
R
∂RC = ∂2S µ̃1(s, S), (3.55)

∂2RA1 +
1
R
∂RA1 +

1
R2 A1 = V1(s, S)∂RUf (R), (3.56)

∂2RB1 +
1
R
∂RB1 +

1
R2 B1 = V2(s, S)∂RUf (R), (3.57)

plus homogeneous equations for {Am, Bm}
∞

m=2 that have non-
singular solutions Am = am(s, S)Rm and Bm = bm(s, S)Rm. The Z0
equation has solution

C(s, S, R) = C0(s, S) +
R2

4
∂2S µ̃1(s, S), (3.58)

while the non-homogeneous equations, (3.56) and (3.57), have
the solutions

A1(s, S, R) = a1(s, S)R − a(R)V1(s, S), (3.59)

B1(s, S, R) = b1(s, S)R − a(R)V2(s, S), (3.60)

where a(R) is the solution of the non-homogeneous ordinary
differential equation

a′′
+

1
R
a′

−
1
R2 a = ∂RUf (R), (3.61)

which enjoys the explicit formula

a(R) =
1
R

∫ R

0
rÛf (r) dr, (3.62)

where we have introduced Ûf := Uf − b−. In particular, a(R) → 0
as R → ∞.

From the matching condition (3.44) we see that µ̃2 grows at
most linearly as R → ∞ and

lim
R→∞

∂µ̃2

∂R
= ∂nµ

n
1 = cos θN1

· ∇xµ
n
1 + sin θN2

· ∇xµ
n
1, (3.63)

where the second equality follows from the definition of the
directional derivative along n, given in (3.22). Taking the R deriva-
tive of (3.52) and using the results above yields
∂µ̃2

∂R
=

R
2
∂2S µ̃1+(a1−a′(R)V1) cos θ+(a2−a′(R)V2) sin θ+

∂ξ

∂R
. (3.64)
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Projecting each of (3.63) and (3.64) onto Zm and matching terms,
we conclude that ξ = 0 and ∂2S µ̃1 = 0, and in particular

∂µ̃2

∂R
(s, S, R, θ, τ ) = −

∂µ̃2

∂R
(s, S, R, θ + π, τ ). (3.65)

This latter result, substituted into (3.63) yields the no-jump con-
dition across the curve Γf

J∂nµ
n
1KΓf = 0, (3.66)

for any choice of normal vector n. As the codimension two curve
Γf has zero capacity, it follows from the zero-jump condition and
(3.45) that µ1 has a harmonic extension to all of Ω , and hence
is spatially constant. In particular ∇xµ

n
1 = 0 for all choices of

direction n. With these reductions µ̃2 takes the form

µ̃2 = C0(s, S) − a(R) (V1(s, S) cos θ + V2(s, S) sin θ) . (3.67)

To determine the normal velocity we substitute ũ0 = Uf into
the expression (3.41) for µ̃2, so that P0 reduces to Lf and the
chemical potential takes the form

µ̃2 =L2f ũ2 − Lf Q̃2 + (κ⃗ · ∇z + ∂2S + W ′′′(ũ0)ũ1 − η1)

× (−Lf ũ1 + κ⃗ · ∇zUf ) (3.68)
+ ηdW ′′(Uf )ũ1,

where we have introduced Q̃2 := Q2 − Lf ũ2. To solve equa-
tion (3.68) for ũ2 we rewrite it in the form

L2f ũ2 = µ̃2 − Q + Lf Q̃2, (3.69)

where

Q := (κ⃗ · ∇z + ∂2S + W ′′′(ũ0)ũ1 − η1)(−Lf ũ1 + κ⃗ · ∇zUf )

+ ηdW ′′(Uf )ũ1. (3.70)

For fixed values of s and S, the expression (3.69) can be solved
for ũ2 if and only if the right-hand side is perpendicular to

ker Lf = span{∂RUf cos θ, ∂RUf sin θ} = ker Lf ,1.

We decompose Q into its Zm components

Q = Q0 + Q1 + Q0,2, (3.71)

where Q0 ∈ Z0, Q1 ∈ Z1, Q0,2 ∈ Z0 + Z2, are given by

Q0 := −W ′′′(Uf )ũ1Lf ũ1 + ∂2S Lf ũ1 + η1Lf ũ1 + ηdW ′′(Uf )ũ1,

(3.72)

Q1 := −κ⃗ · ∇zLf ũ1 + W ′′′(Uf )ũ1κ⃗ · ∇zUf − ∂2S κ⃗ · ∇zUf

− η1κ⃗ · ∇zUf , (3.73)

Q0,2 := (κ⃗ · ∇z)2Uf . (3.74)

Since the spaces Zm are orthogonal and Lf (Q̃2)⊥ ker Lf , the solv-
ability conditions take the form⟨
µ̃2 − Q1, ∂ziUf

⟩
R = 0, for i = 1, 2. (3.75)

To evaluate these conditions we expand Q1 using the expres-
sion (3.50) for ũ1,

⟨Q1, ∂ziUf ⟩R = −2πmfµ1κi − πσf
(
η1κi + ∂2S κi

)
, for i = 1, 2,

(3.76)

where we have introduced

mf :=

∫
∞

0
Ûf RdR, σf :=

∫
∞

0
(U ′

f )
2R dR. (3.77)

The R-weight inner product of µ̃2, given in (3.67), with ∂ziUf
yields

⟨µ̃2, ∂ziUf ⟩R = πVimf ,2, (3.78)

where we have introduced

mf ,2 :=

∫
∞

0
Û2
f RdR. (3.79)

Substituting (3.76) and (3.78) into (3.75) we arrive at the expres-
sion for the normal velocity

V(s, S) = −
2µ1mf − η1σf

mf ,2
κ⃗ −

σf

mf ,2
∂2S κ⃗ . (3.80)

Introducing the quantities

µ∗

f :=
η1σf

2mf
, νf :=

2mf

mf ,2
, kf =

σf

mf ,2
, (3.81)

and return the S variable to its original scaling, we obtain the
normal velocity

V(s, S) = −
[
νf (µ1 − µ∗

f )κ⃗ + εkf ∂2s κ⃗
]
. (3.82)

The constant value of u1 is determined by the conservation
of total mass, and is coupled to changes in length of the curve
Γf . Combining the inner and outer expansions of u yields the
composite expansion

u(x, t) = Uf + ε(µ1Φf ,2 − ηdL−2
f W ′(Uf )) + O(ε2) in Γf ,ℓ, (3.83)

which has the far-field asymptotics,

u(x, t) = b− + ε
µ1

α2
−

+ O(ε2) in Γ̃f ,ℓ. (3.84)

The total mass of the system is given by

M :=

∫
Ω

u(x, t) − b− dx =

∫
Ω

u(x, 0) − b− dx

=

∫
Ω\Γf ,ℓ

(u − b−) dx +

∫
Γf ,ℓ

(u − b−) dx,

(3.85)

where the outer integral takes the value∫
Ω\Γf ,ℓ

(u − b−) dx = ε
µ1

α2
−

(|Ω| − |Γf ,ℓ|) + O(ε2). (3.86)

Using (3.83) and the Jacobian, (3.6), we evaluate the inner integral∫
Γf ,ℓ

(u − b−) dx = ε2
∫
Γf

∫
R2

(
Ûf + ε(µ1Φf ,2 − ηdL−2

f W ′(φf ))

+O(ε2)
)
(1 − εz · κ⃗) dz ds (3.87)

= ε22π |Γf |mf + O(ε3|Γf |).

Assuming that |Γf | ∼ O(ε−1), as is commensurate with an O(1)
amphiphilic mass, we expand

|Γf | = ε−1γf ,−1 + γf ,0 + O(ε), (3.88)

to arrive at the total mass expansion

M = ε

(
µ1

α2
−

|Ω| + 2πmf γf ,−1

)
+ O(ε2). (3.89)

Taking the τ = εt time derivative of the total mass, (3.89), and
solving for dγf ,−1

dτ yields

dγf ,−1

dτ
= −

|Ω|

2πα2
−mf

dµ1

dτ
. (3.90)

On the other hand, any admissible codimension two curve evolv-
ing with normal velocity V satisfies

d|Γf |

dτ
= −

∫
Γf

V · κ⃗ ds. (3.91)
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Combining this expression with (3.82), (3.88), and (3.90) yields

dµ1

dτ
= ε

2πα2
−
mf

|Ω|

(
−νf

(
µ1 − µ∗

f

) ∫
Γf

|κ⃗|
2 ds

+εkf

∫
Γf

|∂sκ⃗|
2 ds

)
+ O(ε2). (3.92)

This system exhibits the same quenching behavior as the codi-
mension one evolution, with the distinction being that the equi-
librium far-field density for a codimension two curve takes the
form

lim
τ→∞

u = b− + ε
µ∗

f

α2
−

+ O(ε2). (3.93)

4. Competitive evolution of amphiphilic suspensions

We assume that Ω ⊂ R3 and combine the geometric flow re-
sults derived in Sections 2 and 3 with the pearling stability results
for bilayers and filaments presented in [6]. The goal is to derive
an overall picture of the complexity of transients and bifurcation
structure of the H−1 gradient flow of the strong scaling of the FCH
system.

4.1. Competitive evolution of codimension one and two systems

Fix Ω ⊂ R3 and let Γb and Γf be admissible codimension
one and codimension two morphologies with disjoint reaches,
Γb,ℓ and Γf ,ℓ. We emphasize that Γb and Γf may be comprised
of multiple disjoint surfaces and curves. For a given value of the
chemical potential, µ1, the codimension one bilayer morphology
ub, given in (2.54) and codimension two filament morphology uf ,
given in (3.83) satisfy identical far-field asymptotics

lim
R→∞

uf = lim
z→∞

ub = b− − ε
µ1

α2
−

+ O(ε2). (4.1)

Consequently we may form the composite solution

ub,f = ub + uf −

(
b− − ε

µ1

α2
−

)
+ O(ε2), (4.2)

parameterized by Γb, Γf , and the common, slowly varying, chem-
ical potential µ1. Recalling the scalings (2.59) and (3.88) of the
surface area and length of Γb and Γf respectively, the total mass
of the composite solution satisfies

M = ε

(
µ1

α2
−

|Ω| + mbγb,0 + 2πmf γf ,−1

)
+ O(ε2), (4.3)

where mb, the bilayer mass per unit area, is defined in (2.51), and
2πmf denotes the filament mass per unit length, defined in (3.77).
Expanding M = εM̂ + O(ε2) and solving for µ1 yields relation
between the morphology size and the chemical potential µ1,

µ1 =
α2

−

|Ω|

(
M̂ − mbγb,0 − 2πmf γf ,−1

)
. (4.4)

Taking the time derivative of (4.4) and using the relations (2.61)
and (3.91) to relate the growth of the curves to the normal
velocities, yields an evolution equation for the chemical potential
given in (1.9). Coupling this equation to the normal velocities for
the bilayer and filament derived in (1.7) and (1.8) gives a closed
system for the combined curve motion and far-field chemical
potential.

4.2. Analysis of competitive geometric evolution and bifurcation

The analysis presents a bifurcation diagram with four thresh-
olds that delineate distinct behaviors. The µ1 thresholds for the

pearling bifurcation, Pb and Pf , depend upon the functionalization
parameters η1 and η2 through their difference ηd := η1 −

η2. The µ1 thresholds for the transition from curve shorten-
ing to regularized curve lengthening, µ∗

b and µ∗

f given in (2.52)
and (3.81) respectively, have a more subtle dependence upon
the functionalization parameters. These relations are summarized
below:

µ1 sign(Sb) < Pb(ηd) := −ηd
λb,0∥ψb,0∥

2
L2

|Sb|
, Bilayers Pearling

Stable (4.5)

µ1 sign(Sf ) < Pf (ηd) := −ηd

∥ψ ′
f ,0,0∥

2
L2R

+ λf ,0,0∥ψf ,0,0∥
2
L2R

|Sf |
, Filaments Pearling

Stable (4.6)
µ1 < µ∗

b (η1, η2), Bilayers Curve

Shortening (4.7)
µ1 < µ∗

f (η1, η2), Filament Curve

Shortening. (4.8)

The signs of the shape factors Sb and Sf , defined in (1.6), depend
upon the choice of the double well, W , and impact not only the
sign of the right-hand sides of (4.5) and (4.6) but also the direc-
tion of the inequalities, see Fig. 3 (right). The chemical potential
and the geometric flows evolve on the same t = O(ε−1) timescale.
Within the H−1 gradient flow, the pearling instability produces
eigenvalues of size O(ε−1), [6] and hence will manifest itself on
the t = O(ε) timescale, essentially instantaneously on the time
scale of the geometric flow and the chemical potential. We define
the pearling instability region to be set of values (µ1, η1, η2) for
which either codimension one or codimension two structures are
pearling unstable.

We investigate the variation of the pearling instability regions,
and its relation to regions of curve lengthening flows, as functions
of the well shape. For simplicity we present these regions in the
µ1–ηd plane, with the assumption that η1 = 0.15, unless specified
otherwise. To parameterize the well shape we fix b± = ±1 and
insert a one-parameter well tilt, ξ into the double-well potential,

W (u; ξ ) :=
1
2
(u − b−)2

(
1
2
(u − b+)2 −

ξ

3

(
u −

3b+ − b−

2

))
,

(4.9)

where the parameter ξ controls the value of W at the right well
u = b+, see Fig. 3 (left).

For the µ1 dynamics, as η1 and η2 are fixed parameters, the
temporal evolution of µ1 traces a vertical line segment on the di-
agram, with µ1 decreasing if it is larger than both µ∗

b and µ∗

f and
increasing if it is smaller than both. The µ1-region bounded by
the points {µ∗

b, µ
∗

f } is attracting and forward invariant under the
flow see Fig. 3 (center). Within this invariant region the direction
of the flow depends upon the overall curvatures of the two classes
of morphologies; however to leading order the total area/length
of the codimensional structures with the larger equilibrium value
decreases monotonically and the other increases monotonically,
so long as the morphologies remain admissible. A simulation of
the FCH gradient flow with one spherical bilayer and two circular
filaments is presented in Fig. 4 for parameter values for which
µ∗

b < µ∗

f .
Motivated by this example, and to further illustrate the dy-

namics, we consider a composite morphology consisting of Nb
spherical bilayers of radii R1, . . . , RNb and Nf = O(ε−1) circu-
lar filaments of radii r1, . . . , rNf . 1 For these special shapes the
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Fig. 3. (left) Graph of the double well, W versus u for ξ = −0.9,−0.7,−0.5 (see (4.9)). (center) Diagram of the curve shortening regions in ηd–µ1 plane, for
ξ = −0.9 and η1 = 0.15. Arrows indicate the direction of the temporal evolution of µ1 under the flow (1.9). The shaded region is forward invariant and globally
attracting so long as the curves remain admissible. (right) Values of the bilayer and filament shape factors, Sb (blue) and Sf (red) as a function of the well tilt, ξ .
The change in sign of Sb near ξ = −0.8 flips the direction of the inequality in (4.5) . (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 4. Simulation of the FCH gradient flow for ε = 0.03, η1 = 0.15, η2 = 0.24, and ξ = −0.15. For these values µ∗

b < 0 < µ∗

f and after a short transient bilayers
will grow while filaments shrink. (a) Initial data consisting of two circular filaments and a spherical bilayer inside the [−π, π]

3 computational domain. (b) 2D slice
along x–z plane (y = 0) of initial data. (c) 3D pose of the t = 200 (τ = 6) final computation stage and (d) corresponding 2D slice showing the larger bilayer and
smaller filament radii.

competitive evolution (1.7)–(1.9) reduces to

Ṙi = νb
(
µ1 − µ∗

b

) 2
Ri
, i = 1, . . . ,Nb, (4.10)

ṙj = νf
(
µ1 − µ∗

f

) 1
rj
, j = 1, . . . , ε−1Nf , (4.11)

µ̇1 = −
α2

−

|Ω|

⎛⎝16πmbνb(µ1 − µ∗

b)Nb + ε4π2mf νf (µ1 − µ∗

f )
Nf∑
j=1

1
rj

⎞⎠ ,
(4.12)

where the dot notation denotes differentiation with respect to
τ = t/ε. The µ1 evolution depends upon the spherical bilayers
only through their total number. Consistent with the discus-
sion above, the bulk chemical potential µ1 decreases if µ1 >

max{µ∗

b, µ
∗

f } and increases if µ1 < min{µ∗

b, µ
∗

f }. The radii shrink
or grow depending upon the signs of µ1 − µ∗

b and µ1 − µ∗

f .
If both Nb and Nf are positive, and µ∗

b ̸= µ∗

f then the system
has no equilibrium. Assuming for simplicity of presentation that
µ∗

b < µ∗

f , then after a possible transient the system enters a
regime in which all spheres are growing and all circular filaments
are shrinking. The radii rj will then decrease to zero in finite
time due to the inverse relation between ṙj and rj. If the zero
radius filaments are removed from the system and the remaining
filaments re-indexed, then after a transient the set of hoops will
be empty (Nf = 0) and only spheres will remain. At this point
µ1 will relax (quench) at an exponential rate from above to µ∗

b
as the spherical radii grow, albeit at an exponentially decreasing
rate as µ1 quenches to µ∗

b . The equilibrium will be a collection

of spherical bilayers of differing radii. We emphasize that in the
growing regime spherical shapes are unstable to perturbation
under the full flow (1.7). Manifestation of this instability requires
sufficiently large values of νb(µ1 − µ∗

b) > 0 in relation to the co-
efficient εkb of the surface diffusion term in (1.7), and is triggered
more easily with increasing radius. However, if the non-spherical
excursions are not so large as to induce self-intersection, then
the shapes return to spherical as µ1 quenches to µ∗

b . Fig. 5
presents a simulation of the full FCH gradient flow that illustrates
this phenomenon, while a rigorous derivation of the transient
instability regime of the curve lengthening flow in 1 + 2D for
nearly circular bilayers is presented in [20].

In Fig. 6, the pearling bifurcation lines are added and the full
stability diagram is shown for values of the well-tilt parameter
ξ = −0.85,−0.7,−0.45, and −0.2. For ξ = −0.85, Sf is
positive, Sb is slightly negative, and for positive values of µ1
filament pearling instability region contains the bilayer pearling
instability region. As ξ is decreased from −0.7 to −0.45 the two
pearling instability lines almost coincide, and for ξ = −0.2 they
have crossed, with the filament pearling instability region now
lying above the bilayer pearling instability region for µ1 > 0.
In all figures the intersections of the pearling instability lines
occur to the left of the crossing of the curve lengthening lines.
This implies that increasing ηd from negative values will excite
pearling bifurcations at smaller values of ηd than those for which
the filament morphology becomes dynamically favored over the
bilayer morphology. For the non-generic value of ηd at which
the critical values µ∗

b = µ∗

f coincide, codimension one and two
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Fig. 5. Simulation of the FCH gradient flow corresponding to a single circular bilayer in [−2π, 2π ]
2

⊂ R2 in the regularized curve lengthening regime. The larger
radii and value of µ1 −µ∗

b , compared to simulations presented in Fig. 4, induce the interfacial meander. Yet larger initial values of µ1 −µ∗

b lead to self-intersection
and defect generation. (a) The initial data has µ1 > µ∗

b , with sufficient excess to initiate shape perturbations as the circular bilayer grows. (b) The onset of the shape
instability at time t = 484. (c) Quenching of the flow at t = 986 as the value of µ1 relaxes towards µb∗ and the higher order surface diffusion returns the interface
back to a larger, circular shape.

structures can co-exist on the t = O(ε−1) time-scales under
consideration here.

4.3. Analytic bifurcation diagrams and comparison to simulations

We compare the evolution of numerical simulations of the H−1

gradient flow of the FCH free energy, (1.3), to the corresponding
bifurcation results and to simulations from a self-consistent mean
field model. The parameters impacting stability are the func-
tionalization parameters η1 and η2, the time-dependent scaled
chemical potential µ1, and the shape of the double well, pa-
rameterized by ξ . For simplicity we fix η1 = 0.15 and vary η2
and ξ . Simulations of the strong FCH gradient flow, (1.1), were
conducted in a domain Ω = [−π, π]

3
⊂ R3, with initial data

of the form (4.2) with Γb consisting of a single sphere of radius
R1 = 1.1 with center at (0, 0, 0) and Γf comprised of two circular
filaments of radius r1 = r2 = 1.6 oriented parallel to the x–y
plane of Ω and with center point at

(
0, 0,± 1

2 (π + R1/2)
)
. The

initial value of µ1 varied with each simulation and is reported
in Fig. 7. The system parameters are ε = 0.03, η1 = 0.15
and η2 = 0.24, hence ηd = −0.09, and four separate values
of ξ := −0.15,−0.2,−0.25,−0.3. In addition, there was one
simulation for ξ = −0.2 and η1 = η2 = 0.15. The simulations
were conducted for t ∈ [0, 100], equivalently τ ∈ [0, 3].

Results for the five simulations are superimposed upon the
corresponding µ1 − ηd bifurcation diagram and presented in
Fig. 8. The initial and final values of µ1 for each simulation are
indicated with a closed circle and closed square respectively in
each of the four diagrams. For ξ = −0.15 the value of µ1 starts
in a region of bilayer and filament pearling stability, filament
curve shortening, and bilayer regularized curve lengthening, see
Fig. 8(bottom-right). During the simulation the bilayer radius
grew, the filaments shrunk, and neither pearled, the τ = 3 end
state is presented in Fig. 7 (left/top-left). Two simulations were
conducted for ξ = −0.2, for the simulation with ηd = −0.09
the initial value of µ1 lies at the boarder of the bilayer pearling
region, and the initial stages of the simulation (t < 5) displayed
the onset of pearling, however the value of µ1 decreased out of
the pearling region as the filaments and bilayers grow and the
pearling evanescent, restoring the unpearled bilayer structure.
The end-state is presented in Fig. 7 (left/top-right), there is less
shrinking of the circular filaments than in the case η2 = −0.15
and the filaments are thinner due to the stronger well tilt. The
ξ = −0.2 simulation with ηd = 0 but an identical initial value of
µ1 starts in the middle of the bilayer pearling region, the bilayer

pearled fully (end-state not shown) and the value of µ1 increased,
see Fig. 8 (bottom-left). The simulations with ξ = −0.25 and
ξ = −0.3 begin within the bilayer pearling region, see Fig. 8
(top-left and top-right) and rapidly pearled with the ξ = −0.25
simulation pearling around t = 5 and the ξ = −0.3 simulation
fully pearled at the first output time of t = 1. The pearling leads
to an increase in µ1 as the bilayer sheds net amphiphilic molecule
mass to the bulk (far-field). The end states are depicted in Fig. 7
(left/bottom-left and bottom-right).

The bilayer pearling instability was observed by Fraaije and
Sevink, who developed a self-consistent mean field density func-
tional model describing the free energy of amphiphilic diblock
polymer surfactants embedded in solvent. Their model parame-
ters are based upon poly(propylene oxide)-poly(ethylene oxide)
diblock in an aqueous solution, see [2] and reference therein. They
simulated spherical nanodroplets of 15% solvent and 85% polymer
by volume. By decreasing the block ratio — the ratio of the length
of the hydrophilic portion of the diblock chain to the length of the
hydrophobic portion, they uncovered a series of bifurcations that
lead from stable bilayers, to pearled bilayers to a continuous fila-
ment pattern decorated with Y -junctions and endcap defects, see
Fig. 7 (center). This change in block ratio from 35% amphiphilic
polymer down to 20% amphiphilic polymer increases the aspect
ratio of the minority phase. Within the context of the FCH, the
parameter η2 weighs the energy requirement of compressing the
minority phase into the restricted core of a higher codimensional
structure, corresponding to values of u for which the double well
W is negative. In particular, bilayer profiles reside in the positive
region of the double well, W (φb) > 0, while the filament profile
accesses the negative regions of W , consequently negative values
of η2 lower the energy cost of filaments relative to bilayers. In this
sense positive values of η2 penalize higher codimensional struc-
tures, which is analogous to amphiphilic molecule aspect ratio
near one, while negative values of η2 favor the packing found in
high codimension morphologies, analogous to a high aspect ratio
amphiphilic molecule, see Fig. 7 (right). These preferences are
born out in Fig. 6: for fixed values of µ1, decreasing η2 under con-
stant η1, hence increasing ηd, results in a crossing of the pearling
stability line, leading to the pearled morphology seen in Fig. 7
(center/b and c). Further increase in ηd leads to a defect laden
filament structure, see Fig. 7 (center/d) consistent with slight
crossing of the filament pearling stability line. This sequence,
bilayer stability followed by bilayer pearling and then filament
pearling for µ1 > 0 and increasing ηd is consistent with a value
of ξ in the range [−0.4,−0.2] depicted in Fig. 6. The qualitative
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Fig. 6. A µ1–ηd bifurcation diagram versus µ1 (vertical axis) and ηd (horizontal axis) for ξ = −0.85,−0.7,−0.45 and −0.2 and η1 fixed at η1 = 0.15. Pearling
instability holds to the right of the dotted lines (blue-bilayers, red-filaments) while regularized curve lengthening holds above the solid lines (blue-bilayers, red-
filaments). Areas of pearling instability and curve lengthening are indicated in key regions. The value of µ1 is generically time dependent, and the gray shaded region
is forward invariant under the flow . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

agreement between the pearled morphologies observed in the
FCH free energy and the self-consistent density-functional model
is striking. Both models present emergent pearling with smaller,
round holes, compare Fig. 7 (left/bottom-left) and (center/b),
while fully emerged pearling leads to larger, pentagonal shaped
holes, compare Fig. 7 (left/bottom-right) and (center/c).

4.4. Comparison of analytical bifurcation diagrams to experiments

We compare the bifurcation structure derived for codimension
1 and 2 composite morphologies within the FCH gradient flow to
experimental results of Dicher and Eisenberg reprinted in Fig. 9
and of Jain and Bates reprinted in Fig. 1.

4.4.1. Bifurcations of Dicher and Eisenberg
The bifurcation experiments of Dicher and Eisenberg, [3], de-

picted in Fig. 1 (left), characterize the end-states of casts of
PS–PAA amphiphilic diblocks dispersed in a water–dioxane sol-
vent blend. Dioxane is a good solvent for both PEO and PS, but
PS, like its commercial relative styrofoam, is strongly hydrophobic
in water. Increasing the water content from zero leads to end-
state morphologies, in order: solvability, only micelles, micelles
and rods, only rods, rods and vesicles, and only vesicles. Here
micelles are codimension 3, while rods and vesicles refer to
codimension 2 and 1 respectively. An increase in water content
in the solvent is analogous to an increase in η1 — the energy
release per unit of interface formation, under constant diblock
aspect ratio, hence constant η2. This morphological bifurcation
sequence can be emulated within the FCH equation by fixing ξ =

−0.5 and η2 = −0.4 and allowing η1 to vary from 0 to 0.4. The
resulting µ1–η1 bifurcation diagram is presented in Fig. 9 (left).
The curve shortening lines are presented within the view, the
pearling stability lines are outside the view. For small values of η1
filaments are dynamically favored, while bilayers are dynamically
favored for larger values of η1. In particular, the horizontal line is
color coded to depict a probable end-state morphology of initial
data consisting of an admissible composite solution with µ1 =

0.05. Here red denotes a pure filament end-state, blue a pure
bilayer end-state and the yellow corresponds to a region of long-
time coexistence of the two morphologies due to the approximate
equality of the critical values µ∗

b = µ∗

f for η1 = 0.22. However the
bifurcation diagram lies within the pearling instability region of
both bilayers and filaments, and as a result the FCH predicts that
neither of these pure states would persist. This is a limitation in
the FCH model, with the well choice considered here the intersec-
tion of the pearling bifurcation curves occurs at smaller values of
η1 than the intersection of the curve shortening lines. Agreement
with these experimental results requires a robust inhibition of
the pearling mechanism. Indeed, the experimental dynamics for
the PS–PAA polymers considered here are largely reversible, as
shown in Fig. 9 (right), increasing and then decreasing the water
content leads to a fully reversible sequence of morphological
bifurcations. The presence of the pearling bifurcation generates
complex morphologies with strong hysteresis, see Fig. 10 (center).
Matching this class of morphological bifurcation diagrams re-
quires a tuning mechanism within the well shape W that affords
robust pearling inhibition. Such a mechanism is proposed within
the context of multicomponent models in [21] and [22].
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Fig. 7. (left) The t = 100 (τ = 3) end state of simulations of the FCH gradient flow for ε = 0.03, η1 = 0.15, η2 = 0.24 from initial data described in the text
and well tilt ξ = −0.15,−0.20 (top row, left to right), ξ = −0.25,−0.3 (bottom row, left to right). The less negative values of ξ have initial values of µ1 that
inhibit pearling, for the more negative two values the bilayer pearls. Images courtesy of Andrew Christlieb and Jaylan Jones. (center) Simulations of a mean-field
density functional model of amphiphilic diblock copolymers with ratio of amphiphilic component of the diblock decreasing from (a) 35% (b) 30% (c) 25% (d) 20%. The
minority solvent-hydrophilic phase is imaged. Reprinted (adapted) with permission from [2]. Copyright 2003 American Chemical Society. (right) Depiction of aspect
ratio of lipids, a biological diblock with a short amphiphilic head and a long hydrophobic tail. The aspect ratio is defined as the lipid volume v divided by the head
cross-sectional area a and tail length l. From [26], reprinted with permission from the Wiley publication. Copyright c⃝2011 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim.

4.4.2. Bifurcations of Jain and Bates
The experimental bifurcation diagram of Jain and Bates [4],

depicted in Fig. 1 (right), shows the end-state morphology of dis-
persions of PEO-PB with different polymer lengths and different
weight fractions of PEO, wPEO, and hence different aspect ratios
of the overall amphiphilic diblock. For comparison Fig. 10 (left)
depicts the end states of the FCH gradient flow corresponding to
values of ξ = −0.2 and η1 = 0.15 for initial values of µ1 = 0.075
and various values of ηd arising from variation in η2 which models
the changes in diblock aspect ratio. Small, negative values of η2
correspond to low values of wPEO while larger, positives values of
η2 correspond to larger values of wPEO and to negative values of
ηd. The horizontal line in Fig. 10 (left) is color coded to depict a
probable end-state of the FCH evolution starting from an admis-
sible composite solution with this value of µ1. On the left where
ηd < −0.5, an initial value of µ1 = 0.075, both codimension
one and two morphologies are in their curve lengthening region
and both would increase in surface area/length. However as µ1 is
depleted, the suspension enters the curve shortening region for
filaments, which will either vanish in finite time or pearl as µ1
crosses the red dotted line – the end result is a pure bilayer state
– indicated by the blue color of the horizontal line for this value
of ηd.

We focus on the values of ηd in [−0.35,−0.05], for which the
horizontal line is colored green, to indicate a region of morpholog-
ical complexity. The initial data lies in the bilayer pearling region,
but passes transiently through it to bilayer pearling stability re-
gion. Depending upon the form of the initial bilayer morphology
they may either fully pearl and form filament networks, or persist
as bilayers and then grow after the return to pearling stability.
Filament networks formed from the pearling of a bilayer typically
host many Y -junctions and end caps. The filament network will
expand until µ1 crosses the red-solid filament curve shortening
line, at this point any defect free filaments will shrink, although

the presence of any end-caps and Y -junctions in a particular
component will render its evolution unclear. This uncertainty is
reflected in the dotted nature of the bottom half of the green
vertical line. The end result of the evolution is strongly dependent
upon the form of the initial data, and will be very hysteretic in
this regime. The uncertainty in the evolution is consistent with
co-existing bilayers, filament networks, Y -junctured filaments,
and end-cap defects, see Fig. 10 (center) for a depiction of the
experimental morphology found in this regime and Fig. 10 (right)
for a corresponding end-state of simulation of the FCH gradient
flow from random initial data.

For large values of ηd the µ1 flow remains in the bilayer
pearling instability region, the bilayers either will not form or
will pearl and transform to filament networks with the end-
result being a Y -juncture dominated filament network. The last
prediction, for ηd = −0.02 corresponds to the triple intersec-
tion (red circle) of the descending µ1 line, the filament pearling
(red-dotted), and curve shortening (red-solid) lines. The arrival
of µ1 to the filament curve shortening line from above is con-
sistent with a stable filament phase, but the emergent pearling
bifurcation signals a transition to end-cap and micelle formation,
and corresponds to the possible coexistence of filament and mi-
celle phases. This transition from filament to filament-micelle is
reflected in the dotted nature of the yellow µ1 horizontal line
for ηd > −0.02. A final transition to a pure micelle stage is
plausible but is outside the scope of our analysis. The overall
trend depicted in Fig. 10 (left) suggests increasing ηd at fixed
η1 results in bilayers, bilayers mixed with defective filaments
(end caps and Y -junctions), filaments, and filaments coexisting
with micelles. This bifurcation sequence is in excellent qualitative
agreement with the NPB = 170 bifurcation sequence depicted in
Fig. 1 (right) as the PEO weight fraction wPEO decreases from high
values to low values, corresponding to decreasing η2 and hence
increasing ηd subject to constant values of η1.
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Fig. 8. µ1–ηd bifurcation diagrams with η1 = 0.15 for the same values of ξ as in the end-states depicted in Fig. 7 (left). For the five simulations the initial and t = 100
final value of µ1 is indicated on the corresponding bifurcation diagram with a solid black circle and square, respectively. The simulations with ξ = −0.25,−0.3 and
ξ = −0.2 with ηd = 0 lead to pearled morphologies.

Fig. 9. (left) A µ1–η1 bifurcation diagram with ξ = −0.5 and η2 = −0.4 that shows the curve shortening lines for bilayers and filaments and vertical arrows showing
generic evolution of µ1 from initial data starting at 0.05 for η1 running from 0 to 0.4. The color coding of the µ1 = 0.05 line indicates the final result of the end state
with red denoting pure filament, yellow coexistence of filament and bilayer, and blue denoting pure bilayer; compare to Fig. 1 (left) for increasing values of water
in solvent phase. (right) Complete reversibility in a PS–PAA system under change in water solvent concentration, implying robust inhibition of pearling instabilities
. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Source: From [3]. Reprinted with permission from AAAS.

The bifurcation sequence depicted in Fig. 1 (right) for NPB =

45 corresponds to a much shorter, stiffer diblock polymer. In
this regime the network and defect-laden filament phase are
not observed, rather increasing wPEO weight fraction leads to the
codimensional bifurcation sequence which leads from bilayers, to
coexistence of bilayers and filaments, to filaments, to coexistence
of filaments and micelles, and finally to micelles. While the gen-
eral trend of the codimensional bifurcation sequence is supported
by the competitive geometric motion and its bifurcations, as in

Fig. 9 (left), we reiterate that within the context of the scalar
version of the FCH free energy presented herein, the pearling
bifurcation cannot be fully suppressed.

5. Discussion

We have presented a multiscale analysis of the H−1 gradient
flow of the FCH free energy corresponding to initial data close to
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Fig. 10. (left) A µ1 − ηd bifurcation diagram for ξ = −0.2 and fixed η1 = 0.15, showing the end states of initial data with µ1 = 0.04 and varying values of η2 ,
with color coding corresponding to probable end state: blue — bilayer, green — network and defect structure (morphological complexity), red — filament, dotted
yellow — filament and micelle. Compare to experimental results of Fig. 1 (right) for NPB = 170, with increasing values of wPEO corresponding to decreasing values of
η2 . (center) Experimentally observed network, end cap, and Y -junction morphologies corresponding to the CY phase of the bifurcation diagram from Fig. 1 (right).
Scale bar is 200 nm, From [4]. Reprinted with permission from AAAS. (right) End state of simulation of FCH gradient flow corresponding to green arrow, coarsened
from random initial data, courtesy of Zhengfu Xu . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

dressings of admissible codimension one (bilayer) and codimen-
sion two (filament) morphologies. We derived their curvature
driven flow which couples to the evolving, spatially constant far-
field chemical potential, µ1. This flow is the basis of the morpho-
logical competition, which barring other bifurcations leads to an
end state corresponding to the dynamically favored morphology
with the lower critical value, µ∗

b or µ∗

f , of the far field chemical
potential. In particular we identify regimes in which the geomet-
ric flow leads to growth or evanescence of each phase through
curve shortening or regularized curve lengthening. Combining the
curve shortening/regularized curve lengthening bifurcation with
the pearling bifurcation results allows a characterization of the
evolution of defect-free connected components of bilayer and
filament morphologies. Our analysis predicts that codimension
one and two structures do not generically coexist on the long,
t = O(ε−1) time scale within the strong FCH gradient flow. Exper-
imental results show transitions between distinct codimensional
phases with relatively large margins of coexistence, however as
remarked in the experimental literature, the transients associ-
ated to these experiments are long compared to experimental
patience and transients required to achieve a single phase of
codimensional morphology may require months to years, [5].

We compared the analytical bifurcation diagram to results
from numerical simulations of the FCH gradient flow, to simu-
lations of a self-consistent mean-field density functional model
for amphiphilic polymers, and to three sets of experimental stud-
ies of amphiphilic polymers. We find that the self-consistent
mean-field density functional model proposed in [2] predicts
a bifurcation sequence of radial bilayers, pearled bilayers, and
filaments with end-cap defects in strong qualitative agreement
with the FCH bifurcation structure, in particular the structure
of the pearled spherical bilayers computed by both models are
in excellent agreement. The experimental bifurcation analysis of
Jain and Bates, [4], was conducted at two polymer lengths, long
polymers with NPB = 170 and shorter ones with NPB = 45. We
find strong qualitative agreement between the FCH bifurcation
structure and the experimental results for the longer chains, with
the FCH results suggesting that the development of morphological
complexity could be produced in a region in which bilayer pearling
and filament curve shortening bifurcations lie in close proximity,
see Section 4.4.2. The passage of the far-field chemical potential
through these bifurcations engenders network morphologies with
Y -junctions, end-caps, and stable pearled filaments. The analyti-
cal basis of the complexity suggests a mechanism for hysteresis:

the passage through these sequences of bifurcations will not be
readily reversed by a non-adiabatic return of the state variables.

The FCH model with the parameter choices presented herein
does not qualitatively reproduce all of the experimental results.
Both the solvent quality bifurcation experiments of Dicher and
Eisenberg, [3] and the short polymer NPB = 45 experiments of
Jain and Bates do not show evidence of pearling bifurcations.
Complex morphology is not exhibited, and Dicher and Eisenberg
show that for their experimental parameters the morphology is
remarkably reversible: hysteresis is not observed. However, the
Dicher and Eisenberg experimental bifurcation structure is well
described by the dynamical favoritism arising from the mor-
phological competition. To match the full range of experimental
results the FCH free energy needs a tunable mechanism to ro-
bustly inhibit the pearling bifurcation. These can be achieved in
two ways. The first is physically motivated: pearling is a modu-
lation of bilayer width, and shorter polymers are stiffer and lead
to bilayers with a less compressible width. The compressibility
of the bilayer is tunable through the slope of the well W at the
value u at which the bilayer density is greatest, generically the
second W = 0 crossing. Tuning this slope to be large represents
a stiffer diblock and may serve to inhibit the pearling mechanism.
The second mechanism is mathematically motivated: the pearling
bifurcation arises from a balance between the positive eigenvalue
λb,0 of the linearization Lb,0, see (2.7) about the bilayer profile,
and the negative eigenspace of the Laplace–Beltrami operator,
∆s. The balance cannot occur if the operator Lb,0 is non-self
adjoint and whose positive real part spectrum have non-zero
imaginary parts. This arrangement can be tuned and detuned
within a multicomponent model, providing precisely the desired
mechanism for robust pearling inhibition. This mechanism was
discussed in section 5 of [21] and forms the basis of the study of
the singularly perturbed systems in [22].

There remains a considerable amount to address within the
family of FCH energies. While the FCH is at some level a phe-
nomenological model with parameter values that are not directly
tunable from first principles, the FCH parameter values can be
fit to experiments, or subscale molecular simulations, much like
Flory–Huggins parameters. Nonetheless, fitting the full form of
a complicated well W , especially for multicomponent models,
may be challenging. Even within the simple model presented
here, the role of micelles on morphological competition has not
been addressed, and their stability, including their growth into
dumbbells and end-caped filaments is a primary instability mode
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that leads adiabatically from a codimension three structure into a
defective codimension two structures. As there are almost no an-
alytical characterization of defect modes, the micelle to dumbbell
instability is worthy of study on a purely mathematical basis.
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