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Abstract. We extend the renormalization group method, developed for the study of pulse interaction in damped wave
equations, to the study of oscillatory motion of super-critical pulses in the parametrically forced nonlinear Schrödinger equation
(PNLS). We develop a global manifold which asymptotically attracts the flow into an O(r4) neighborhood in the H1 norm,
where r is the amplitude of the internal oscillations. Moreover we rigorously recover the oscillatory and translational dynamics
of the pulses as a finite-dimensional flow on the manifold. The normal form for the projected dynamics of the oscillatory pulse
show that it is created in a supercritical Poincaré-Hopf bifurcation.

1. Introduction . The parametrically forced nonlinear Schrödinger equation (PNLS) describes a wide
variety of physical phenomena, including the optical parametric oscillator in the large pump-detuning limit,
Faraday resonance in water, spin waves and magnetic solitons in ferromagnets, and phase-sensitive parametric
amplification of solitons in optical fibers [2, 3, 17]. In the context of the optical parametric oscillator a pump
field impinges upon a cavity filled with χ2 material, generating a signal field. When the pump field is detuned,
the signal is the sole resonating field. In this limit, investigated in more detail in [17], the signal field evolves
according to (2.1), with the characteristic parameters being the signal detuning, a, and the pump strength,
γ.

For sufficiently strong parametric excitation the cavity supports two branches of pulse-like solutions
created in a saddle-node bifurcation. The lower branch is unstable, while the upper branch has been proven
to be asymptotically stable, see [17], for a range of parameter values. For yet stronger parametric excitation
numerical simulations [3] and [4] have shown that the stable pulse losses stability due to the generation
of internal modes of oscillation. It has been shown, [6], that this instability is associated with a complex
conjugate pair of Hopf eigenvalues of the linearized operator crossing into the right-half complex plane.

In [5] the supercritical dynamics of the oscillatory pulse were addressed formally. The oscillatory solution
was expressed as a perturbation expansion about the pulse solution and putative reduced amplitude equations
for the internal modes were obtained. We expand the renormalization group approach developed in [16],
constructing a finite dimensional manifold of oscillatory pulse solutions, rigorously capturing the translational
and oscillatory motion of the pulses by projecting their evolution onto the tangent plane of the manifold.
In particular we show that the pulse solution of the PNLS equation losses its stability in a super-critical
Poincaré-Hopf bifurcation, generating a stable oscillatory pulse. Initial data for the PNLS equation which is
sufficiently close to the manifold approaches to within O(r4) of the manifold, where r ≪ 1 is the amplitude
of the internal oscillations. This work extends the renormalization group approach since the pulse dynamics
on the tangent plan include the fast pulse oscillation modes within the projected evolution equations, see
(3.30). To develop the normal form for the Poincaré-Hopf bifurcation from the projected equations, the
manifold itself must be modified to account for the fast dynamics, see (2.47-2.48). Only after accounting
for the impact of the fast oscillation through the damped modes of the linear operator can the bifurcation
analysis be conducted on the projected equations. We rigorously show that a super-critical Poincaré-Hopf
bifurcation occurs in the projected equations, and the resulting oscillatory pulses are asymptotically stable
up to O([ℜλ1]

2) in the H1 norm.

Our analysis is only valid for the damped case which in our scaling corresponds to finite a. The authors
in [2] formally investigated the stability problem for the Hamiltonian case, a → ∞, for which the the pulse
instability is due to the “Hamilton-Hopf” bifurcation, characterized by the collision of two pure imaginary
eigenvalues of the associated linearized operator, one detaching from the essential spectrum and the other
originating from the broken U(1) gauge invariance.

In the context of reaction-diffusion equations and other parabolic PDEs, the center manifold approach
has been applied to address the stability of oscillatory solutions generated in Poincaré-Hopf bifurcations.
For the bifurcation of planar solutions, this center-manifold technique is outlined in [15]. More recently
the center-manifold method was extended to any PDE which generates a C1 semigroup with appropriate
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structure, [8]. This has been applied to investigate stability of so-called galloping waves in reaction diffusion
systems was demonstrated in exponentially weighted norms which remove the essential spectrum from the
origin, [18]. Applications to the meander of spiral waves in higher dimension have also been investigated,
[9]-[10]. The novelty in the application of the renormalization group approach lies in its simplicity. The
manifold of oscillatory pulses is constructed explicitly, at the order of accuracy needed, without the technical
contraction mapping arguments implicit in the center manifold construction. Moreover the extension of these
results to interaction of families of oscillatory N-pulses is simpler and more natural via the RG approach as
it does not require an explicit construction of N-pulse solutions before considering their possible bifurcations
and subsequent interaction.

We state our main result below.

Theorem 1.1. The Poincaré-Hopf bifurcation of the PNLS equation (2.4) is super-critical. Specifically,
let δ > 0 be sufficiently small and M > 0 sufficiently large, in terms of the parameter a > ac, see Numerical
Result 2.1, of the PNLS equation. For γ > γc but sufficiently close that ǫ ≡ ℜλH > 0, the real part of
the Hopf eigenvalue, satisfies δ >

√
ǫ, the oscillatory ansatz Φp, see (2.11) and section 2.2, of (2.4) are

asymptotically exponentially stable up to O(ǫ2). That is, for any initial value ~U0 satisfying

min
q∈R

‖Φ0(· − q) − ~U0(·)‖H1 ≤ δ, (1.1)

where the base pulse Φ0 is given by (2.7), the corresponding solution ~U of the PNLS equations satisfies

~U(x, t) = Φp + W (x, t), (1.2)

where p(t) evolves at leading order according to (3.30). In particular the oscillation amplitude p1 and
remainder W satisfy

|p1(t)| ≤ M
(
e−ǫ(t−t0)δ +

√
ǫ
)

, (1.3)

and

‖W‖H1 ≤ M
(
e−νtδ + |p1(t)|4

)
. (1.4)

The paper is organized as follows, in section 2 we present the PNLS equations and the steady pulse
solutions, describe the linearized operator and construct the Hopf-manifold which describes the oscillatory
solutions at the requisite order of accuracy. In section 3 we present the RG method, in particular obtaining
the projected equations, including the Poincaré-Hopf normal form, decay estimates on the remainder, and
prove the main result.

1.1. Notation. The following notation is employed. Transposition is denoted by the superscript t. The
components of a vector quantity A are denoted by A = (a1, . . . , an)

t
. The L2 inner product 〈· |· 〉 of two

complex vector functions A and B is defined as

〈A |B 〉 ≡
∫ ∞

−∞

A(x) · B(x)dx. (1.5)

This inner product induces the L2 norm ‖ · ‖. The H1 norm is denoted ‖A‖H1 =
√
‖A‖2

L2 + ‖∂xA‖2
L2 .

The orthogonal complement in L2 is denoted by ⊥. Given an operator L, its adjoint with respect to 〈· |· 〉
is denoted by L†, and its spectrum and resolvent sets are denoted by σ (L) and ρ (L). Given z ∈ C we
denote its complex conjugate by z, its argument by arg z, and its real and imaginary parts by ℜz and ℑz.
Differentiation with respect to the variable x is denoted by ∂x, or ∇x.

2. The PNLS Equations. The PNLS equation for the signal field u in a cavity can be written as

iut +
1

2
uxx + |u|2u + (i − a)u − γu = 0, (2.1)
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where γ and a are the forcing and detuning parameters respectively, [19, 20, 17]. For sufficiently strong
parametric excitation, γ > 1, the system sustains standing waves

φ± =

(√
2ν−1

± sech
√

2ν−1
± x

)
eiθ± , (2.2)

where ν± = 1/
(
a ±

√
γ2 − 1

)
and e−2iθ± =

(
i ±
√

γ2 − 1
)

/γ.

We consider the upper branch, φ+ of pulse solutions. Denoting ν ≡ ν+, we rescale the independent
variables of the PNLS (2.1) as

x̃ ≡
√

2ν−1x and t̃ = ν−1t, (2.3)

and recast the PNLS as a scalar system, introducing the new dependent variables

~U = (U1, U2)
t
=
(
ℜ(

√
νe−iθφ),ℑ(

√
νe−iθφ)

)t
. (2.4)

to obtain

~Ut = F
(

~U
)

, (2.5)

where

F
(

~U
)
≡
(

0 −
(
∂2

x − µ +
∣∣~U
∣∣2
)

∂2
x − 1 +

∣∣~U
∣∣2 −2ν

)
~U, (2.6)

and µ ≡ ν+/ν−. For a ∈ (0,∞) and γ ∈
(
1,
√

1 + a2
)
, equation (2.5) possesses the family of pulse solutions

Φ0(x; q) =

(
φq

0

)
(2.7)

where for q ∈ R

φq(x) =
√

2 sech(x − q). (2.8)

To describe the dynamics in the super-critical regime we decompose the solutions of the PNLS equation
in a neighborhood of the pulse profile into a pulse and an remainder term

~U(x, t) = Φp(t) + W (x, t), (2.9)

where the parameters p = (p0, p1, p2) = (q, r1, r2) describe the position of the pulse and the magnitude of
the oscillation. The graph of Φp forms a three dimensional manifold within the phase space

M =
{
Φp

∣∣p ∈ R × C
}

. (2.10)

As outlined in section 2.2. The manifold is further resolved into the pulse and higher-order Hopf modes
which capture the interaction of the pulse with the unstable Hopf eigenmodes,

Φp = Φ0(x, q) + H(x;p). (2.11)

The evolution for the solution ~U of (2.5) in a neighborhood of the manifold M is described by the Taylor
expansion of the vector field F about the unperturbed pulse Φ0,

Wt + ∇pΦpṗ = F (Φ0) + Lq(H + W ) + N (H + W ). (2.12)

Here Lq is the linearization of F about Φ0 and N represents terms nonlinear in H and W . Since Φ0 is an
exact solution of (2.5), F (Φ0) = 0. The nonlinearity can be written as quadratic and cubic terms

N (Y ) = φN2(Y, Y ) + N3(Y, Y, Y ), (2.13)

where

N2(A, B) ≡
(

−2a1b2

3a1b1 + a2b2

)
and N3(A, B, C) ≡

(
−a1b1c2 − a2b2c2

a1b1c1 + a1b2c2

)
. (2.14)

Each of N2 and N3 are linear in their arguments. We also denote N2(Y, Y ) and N3(Y, Y, Y ) by N2(Y ) and
N3(Y ) respectively, while N s

2 (A, B) ≡ N2(A, B) + N2(B, A).
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Fig. 2.1. (left) Bifurcation Diagram for the PNLS. For values of (γ, a) to the left of the solid Hopf bifurcation curve,
γ = γc(a), the Hopf eigenvalues have negative real part, with positive real part to the right. Above the dotted essential bifurcation

curve a =
p

1 + γ2, the essential spectrum resides in the left-half plane, below it the essential spectrum crosses into the right-
half plane. (right) The trajectory of the Hopf eigenvalues for a fixed at a = 2.8 and γ increasing from slightly larger than 1 to
just crossing the Hopf curve. The Hopf eigenvalues start near the origin and -2, move towards each other along the real axis,
collide at −1, move vertically up the line −1 + iR, and collide with eigenvalues created in edge bifurcations from the essential
spectrum, forming a quartet of complex eigenvalues symmetric about the point −1. The right-most two of these eigenvalues
cross the imaginary axis as γ crosses γc(a = 2.8).

2.1. The Linearized Operator. The linearized operator Lq takes the form

Lq =

(
0 Dq

−Cq −2ν

)
, (2.15)

where Cq and Dq are the self-adjoint operators

Cq = −
(
∂2

x + 3φ2
q − 1

)
, (2.16)

Dq = −
(
∂2

x + φ2
q − µ

)
. (2.17)

The operator Cq has the eigenvalue-eigenfunction pairs
{
−3, φ2

q

}
,
{
0, φ′

q

}
and essential spectra [1,∞), while

Dq has the eigenvalue-eigenfunction pair {µ − 1, φq} and essential spectra [µ,∞). In particular Dq has a
bounded self-adjoint inverse for γ ∈

(
1,
√

1 + a2
)
. See [17] for details.

Numerical Result 2.1. There exists a curve γ = γc(a) on which the point spectrum of σ(L) possesses
two complex conjugate eigenvalues λ1 and λ2 = λ1 which lie on the imaginary axis. For γ − γc(a) > 0 the
point spectrum takes the form

σp(L) = {λ0, λ1, λ2} ∪ σs
p(L), (2.18)

where σs
p(L) is comprised of a finite number of eigenvalues contained uniformly within the left-half complex

plane. For a > ac ≈ 2.645, the essential spectrum of L is strictly in the left-half plane for |γ − γc(a)|
sufficiently small.

The eigenvalue problem

LqΨ = λΨ, (2.19)

is re-written as a first order evolution equation for the system Y = (Ψ1, Ψ2, Ψ
′
1, Ψ

′
2)

t,

Y ′ = A(x, λ)Y. (2.20)

In [6], using the technique from [14], the Hopf bifurcation curve γ = γc (a) was computed by constructing the
Dirichlet expansions for the stable and unstable manifolds of zero for (2.20). This expansion yields analytic
expressions, valid in x > x0 > 0, for the solutions Y 1 and Y 2 which decay as x → ∞ and expression, valid
in x < −x0 < 0, for Y 3, Y 4 which decay as x → −∞. These expressions are numerically continued to x = 0
where the Evans function, E(λ) defined by

E(λ) = det
(
Y 1 Y 2 Y 3 Y 4

)∣∣∣
x=0

, (2.21)
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is evaluated. From the nature of the Dirichlet expansion the function Y k for k = 1, 2 are linearly independent,
as are Y k for k = 3, 4. It is well known that the Evans function is analytic in λ away from the branches of
the essential spectrum and that the zeros of E correspond up to multiplicity with the eigenvalues of Lq, see,
[1]. In this way the stability diagram depicted in Figure 2.1 was obtained.

The point spectrum of L1 enjoys a four-fold symmetry. For each λ ∈ σp(Lq) the points λ, −2−λ/ν, and

−2 − λ/ν also lie in σp(Lq). The linearized operator possesses always possesses eigenvalues at λ = 0,−2/ν,
corresponding to the translational eigenvalue of the pulse and its symmetry. The essential spectrum takes
the form

σess(L) =
{
λ = λ1 + iλ2

∣∣∣ λ1 ∈
(
−ν − ν

√
γ2 − a2,−ν + ν

√
γ2 − a2

)
, λ2 = 0 or

λ1 = −ν, λ2 ∈
(
−∞,−ν

√
a2 − γ2

)
∪
(
ν
√

a2 − γ2,∞
)}

. (2.22)

In Figure 2.1 (right) we plot the Hopf eigenvalues for a ≈ 2.645. As γ increases from 1, the eigenvalue λH

leaves the origin along the real axis and moves towards −1. A pair of eigenvalues λ±
E are created in an edge

bifurcation from the two branch points of the essential spectrum located at −1 ± i
√

a2 − 1 and move along
line −1+ iR towards −1. Although the branch points of the essential spectrum also move on the line −1+ iR
towards −1 from above and below, they always trail behind λ±

E . As γ further increases, λH collides with
its symmetry −2 − λH at λ = −1. The pair move vertically, one up and one down, along the line −1 + iR
towards λ±

E . The Hopf eigenvalue λH and its symmetry collide with λ±
E at a critical value of γ, leaving

the line −1 + iR as a symmetric quartet of eigenvalues with the two right most, now denoted λH and λH ,
crossing the imaginary axis as γ increases through γc (a).

The translational eigenfunction is given by

Ψ0(x; q) =

(
φ′

q

0

)
(2.23)

while the complex conjugate Hopf eigenfunctions are denoted by Ψ1(x; q) = (Ψ1,1, Ψ1,2)
t and Ψ2(x; q) = Ψ1.

They are depicted in Figure 2.2 and were numerically computed from the Evans function in [6]. They are
oscillatory with a much slower spatial decay rate than the base pulse Ψ0.

The adjoint of Lq is given by

L†
q =

(
0 −Cq

Dq −2ν

)
(2.24)

Since φ′
q spans the kernel of Cq it follows that

Ψ†
0(x; q) =

1

Θ0

(
2νD−1

q φ′
q

φ′
q

)
(2.25)

is the adjoint eigenfunction which corresponds to the zero eigenvalue of Lq and Θ0 is a normalization

parameter. The adjoint Hopf-eigenfunctions Ψ†
k for k = 1, 2 are also complex conjugates and satisfy

Ψ†
1(x; q) =

1

Θ1

(
(λ1 + 2ν)Ψ1,2

λ1Ψ1,1

)
(2.26)

The normalization constants Θ0 and Θ1 are independent of q and chosen as

Θ0 ≡ −2ν
〈
D−1φ′ |φ′

〉
, (2.27)

Θ1 ≡ 2(λ1 + ν)
〈
Ψ1,1

∣∣Ψ1,2

〉
, (2.28)

so that the Hopf and translational eigen- and adjoint eigenfunctions form a bi-orthonormal set
〈
Ψj

∣∣∣Ψ†
k

〉
= δjk, (2.29)

where δjk is the Kronecker delta. The eigenfunctions Ψj are simple exactly when the normalization constants
Θj are nonzero, see Theorem 1.1 of [11]. The following Lemma is from [17],
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Fig. 2.2. The eigenfunctions and adjoint eigenfunctions of Lq. The Hopf eigenfunctions decay more slowly as |x| → ∞
then the pulse and the translational eigenfunctions.

Lemma 2.2. If γ ∈
(
1,
√

1 + a2
)
, then the translational eigenvalue λ0 = 0 of Lq has algebraic multiplicity

1. Furthermore, Θ0 < 0.

Numerical Result 2.3. For |γ − γc(a)| sufficiently small and a > ac, the Hopf eigenvalues λ1 and λ2

of Lq have algebraic multiplicity 1. Moreover |Θ1| is uniformly bounded away from zero in this region.

We define the spectral projections

πq (·) =

2∑

j=0

〈
·
∣∣∣Ψ†

j

〉
Ψj, (2.30)

π−
q (·) = (I − πq) (·) . (2.31)

The associated eigenspaces are Xq = {~U ∈ H1 × H1
∣∣πq

~U = 0}, and its compliment X−
q = {~U ∈ H1 ×

H1
∣∣π−

q
~U = 0}. The spectrum of Lq is not contained in any sector of the complex plane, and Lq generates

only a C0 semigroup Sq (t). However, because σ (Lq) \{λ0, λ1, λ2} is a strict subset of the left-half complex
plane, the restriction of Lq to X−

q enjoys the following estimate. See Proposition 4.1 of [17] for details.

Lemma 2.4. Each operator Lq generates a C0 semigroup Sq which satisfies

‖Sq (t)U‖
H1 ≤ Me−νt ‖Z‖H1 (2.32)

for some constant M ≥ 1, for all U ∈ X−
q , and for all t ≥ 0. The constants M and ν are independent of

q ∈ R.

The following technical lemma is used in the sequel.

Lemma 2.5. If γ ∈
(
1,
√

1 + a2
)

then

〈
Ψ′

j

∣∣∣Ψ†
k

〉
= 0 (2.33)
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for all j, k = 1, 2.

Proof. The operator Lq is invariant under the reflection x 7→ −x. It follows that Ψj(−x) is also an
eigenfunction of L of eigenvalue λj , and hence by simplicity of the Hopf eigenfunctions, Ψj(−x) = ±Ψj(x).
Since the Hopf eigenfunctions are complex conjugates of each other, and the adjoint eigenfunctions are related
to the eigenfunctions through (2.26) it follows that the Hopf eigenfunctions and adjoint eigenfunctions are
either all even, or all odd. Since differentiation changes parity, the relations (2.33) follow.

Remark: The numerical computations shown in Figure 2.2 show that the Hopf eigenfunctions are even.
The translational eigenfunctions and their adjoints are clearly odd by their construction.

2.2. The Hopf Manifold . To describe the oscillations of the supercritical pulse we form a manifold
parameterized by the pulse position q and the complex amplitude r of the Hopf eigenfunctions. We anticipate
that the amplitude r evolves on a O(1) time scale, while the pulse position q evolves far more slowly. As part
of the RG approach we keep track of both a fixed, base-point, value of the pulse position, q̂, and an evolving
pulse position q. The base-point value is used to define the spectral decomposition, and the higher-order
elements of the manifold, while the sliding point q defines the current pulse location. When the quantity
q− q̂ becomes sufficiently large, we will renormalize, up-dating the fixed point q̂, and the associated spectral
decomposition and manifold. The evolving parameters are

p = (p0, p1, p2) = (q, r1, r2) ∈ R × C
2, (2.34)

where for convenience we have introduced r1 = r and r2 = r. We recall the Hopf manifold

Φp(x) = Φ0(x, q) + H(x;p), (2.35)

and expand H = H(1)(x;p)+H(2)(x;p)+H(3)(x,p). The H(1) terms are linear in r and their tangent plane
spans the Hopf eigenspace, given explicitly as

H(1)(x;p) = r1Ψ1(x − q) + r2Ψ2(x − q). (2.36)

The higher order terms take the form

H(k)(x,p) =

2∑

j1,...,jk=1

rj1 · · · rjk
Hj1···jk

(x;p). (2.37)

To make Φp purely real we take Hjk and Hjkl to be symmetric with respect to the interchange of any two
indices, and in addition, denoting 1 = 2 and 2 = 1, we demand that

Hjk = Hjk and Hjkl = Hjkl. (2.38)

Under these conditions, H12 is real since H12 = H21 = H12.

The local tangent plane of the manifold ∇pΦp closely resembles the Hopf+translational eigenspace Xq.
Demanding that the remainder W lie in the complimentary space X−

q we project the dynamics (2.12) onto
this space and find the the remainder satisfies

Wt = LqW + π−
q (LqH + N (H + W ) −∇pΦpṗ) . (2.39)

This motivates the following definition of the residual R = R(p)

R ≡ LqH + N (H) −∇pΦpF(p), (2.40)

since if π−
q R = 0 then W ≡ 0 is a solution of (2.39). The construct the higher order elements of the Hopf

manifold seeks to minimize the projection of the residual. We impose the condition πqH(2) = πqH(3) = 0,
and solve for the H(k) corrections, k = 2, 3, so as to render ‖π−

q R‖H1 = O(ǫ2). It is these damped components
of the residual which, if unaccounted for in the manifold, would force the remainder W to grow. Eliminating
these terms to O(ǫ2) affords a normal form calculation on the manifold M up to O(r4), permitting the
determination of the stability of the oscillatory modes.
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The projected dynamics are expanded as F = F1 + F2 + F3 where Fk = O(|r|k) for k = 1, 2, 3. The
leading order term F1 substitutes 0 for q̇ and λjrj for ṙj . This yields

∇pΦpF1 =

2∑

j=1

λjrjΨj +

2∑

j,k=1

µjkrjrkHjk +

2∑

j,k,l=1

µjklrjrkrlHjkl, (2.41)

where we have introduced the resonances

µjk = λj + λk and µjkl = λj + λk + λl. (2.42)

The quadratic term, given by (3.32) takes the form

∇pΦpF2 =

2∑

j=1

F2jΨj + 2

2∑

j,k=1

rjF2kHjk + O(|r|4), (2.43)

where F2j is a known quadratic polynomial in r1 and r2 whose coefficients may depend upon q. The cubic
term takes the form,

∇pΦpF3 =

2∑

j=1

F3jΨj + O(|r|4), (2.44)

where F3j is a cubic polynomial in r1 and r2 whose coefficients depend upon H(2) and q. Examining the
linear term in (2.40) we find

LqH = λ1r1Ψ1 + λ2r2Ψ2 +
2∑

j,k=1

rjrkLqHjk +
2∑

j,k,l=1

rjrkrlLqHjkl, (2.45)

while substituting the form (2.37) of H(k) into the nonlinearity and using (2.14) we find

N (H) =
2∑

j,k=1

rjrkφqN2(Ψj , Ψk) +
2∑

j,k,l=1

rjrkrl

(
φqN2(Ψj ,Hkl) + φqN2(Hjk, Ψl) +

+N3(Ψj , Ψk, Ψl)
)

+ O(r4). (2.46)

Substituting the time derivative (2.41-2.44), linear (2.45), and nonlinear (2.46) terms into the residual (2.40)
and projecting with π−

q we set the quadratic coefficients in r to zero, solving for the second order Hopf
corrections

Hjk =
(
π−

q Lq − µjk

)−1
([

∇pΦpF2

]
jk

− φqN2(Ψj , Ψk)
)
, (2.47)

where [F ]jk denotes the coefficient of rjrk in the polynomial F . With Hjk computed the cubic coefficients
of ∇pΦpF2 and ∇pΦpF3 are known. The third order Hopf correction is then given by

Hjkl =
(
π−

q Lq − µjkl

)−1
([

∇pΦp(F2 + F3)
]
jkl

− φq(N2(Ψj ,Hkl) + N2(Hjk, Ψl)) −N3(Ψj, Ψk, Ψl)
)
.(2.48)

The operator π−
q̂ Lq̂ − µ is boundedly invertible, uniformly in q, for µ /∈

(
σs

p(L) ∪ σess(L)
)
. Since each λj

has positive real part, so do the resonances. We deduce that the functions H(k) are uniformly bounded in
H1 × H1 and depend smoothly on q. Finally Lq, πq, and π−

q preserve evenness and oddness with respect to

x = q. Since each Ψk is even with respect to x = q we see that H(2) and H(3) are even with respect to x = q
as well. We have proved the following lemma,

Lemma 2.6. With the Hopf corrections H(2) and H(3) given by (2.47-2.48) the residual defined by (2.40)
satisfies

‖π−
q R‖H1 ≤ M |r|4, (2.49)

for some M > 0 independent of q ∈ R. Moreover the corrections depend smoothly upon q, are uniformly
bounded in H1, reside in X−

q , satisfy the symmetry conditions (2.38), and are even about the point x = q.
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3. The Renormalization Group Method. We restrict the manifolds M constructed in section 2.2
to the tube Kδ = {p ∈ R×C2

∣∣p1 = p2 and |p1| ≤ δ}. We assume at time t0 that the initial data ~U0 satisfies

‖Φp∗
− ~U0‖ ≤ δ, (3.1)

for some p∗ ∈ K. The following proposition establishes the existence of a unique nearby base point p satisfying
the nonlinear condition (3.2) below. It is about this base point p that we develop our local coordinate system.

Proposition 3.1. Let δ > 0 be sufficiently small but independent of ǫ. For all ~U0 and p∗ ∈ K satisfying
‖W∗‖H1 ≤ δ, where W∗ ≡ Φp∗

− ~U0, there exists M > 0, independent of ~U0 and p ∈ K, and a smooth
base-point map B : H1 7→ K such that p = p∗ + B(W∗) satisfies

W0 ≡ ~U0 − Φp ∈ X−
p

. (3.2)

Moreover, if W∗ ∈ Xp̃ for some p̃ ∈ K then

|p − p∗| ≤ M0‖W∗‖H1 |q∗ − q̃|. (3.3)

Proof. Since

W0 = W∗ + Φp − Φp∗
, (3.4)

the condition (3.2) is equivalent to

0 = πpW0 = πp (W∗ + Φp − Φp∗
) . (3.5)

The range of πp is spanned by Ψ0, Ψ1, Ψ2, the equation (3.5) is equivalent to

Υk(p, W∗) ≡
〈
W∗ + Φp − Φp∗

∣∣Ψk(·,p)†
〉

= 0, (3.6)

for k = 0, 1, 2. These equations have the trivial solution Υk(p∗, 0) = 0. From Lemma 2.6 and (2.35-2.36) we
calculate that

∂qΦp = Ψ0 + r1Ψ
′
1 + r2Ψ

′
2 + O(r2), (3.7)

where we used Φ′
0 = Ψ0. Imposing the symmetry conditions (2.38), the rj derivative takes the form

∂rj
Φp = Ψj + 2

2∑

k=1

rkHjk + 3

2∑

k,l=1

rkrlHjkl, (3.8)

We define the matrix Π by

[Π]jk ≡
〈
∂pk

Φp

∣∣∣Ψ†
j

〉
, (3.9)

and we see from (3.7-3.8) that

Π =




1 +
∑2

j=1 rj

〈
Ψ′

j

∣∣∣Ψ†
0

〉
0 0

0 1 0
0 0 1


 , (3.10)

where we have used the orthonormality condition (2.29), even-odd parity of Lemma 2.5, and that Hjk and

Hjkl lie in X−
q and are orthogonal to Ψ†

k for k = 0, 1, 2. Forming the vector function ~Υ = (Υ1, Υ2, Υ3)
t, the

p gradient of ~Υ can be written as

∇p
~Υ
∣∣∣
(p=p∗,W∗=0)

= −Π. (3.11)
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Clearly, ∇p
~Υ
∣∣∣
(p=p∗,W∗=0)

is uniformly invertible for p ∈ K, for δ sufficiently small. The implicit function

theorem guarantees the existence of a smooth function B which provides the solution of (3.2) in a neighbor-
hood about the manifold M defined in (2.10). The interval of existence of B may be chosen uniformly in p

since the solution of (3.2) is translationally independent.

If in addition we have W∗ ∈ X−
p̃

, then
〈
W∗(·)

∣∣∣Ψ†
k(·, p̃)

〉
= 0 for k = 0, 1, 2. We see that

∣∣∣
〈
W∗

∣∣∣Ψ†
k(p∗)

〉∣∣∣ ≤
∣∣∣
〈
W∗

∣∣∣Ψ†
k(p̃) − Ψ†

k(p∗)
〉∣∣∣ ≤ M0‖W∗‖L2 |q∗ − q̃|, (3.12)

since Ψ†
k depends upon p only through p1 = q. This shows that |∂W

~Υ| ≤ M0‖W∗‖L2 |q∗ − q̃|, so the implicit
function theorem, together with the O(1) bound on Π−1, yields (3.3).

3.1. The Projected Equations. We freeze the slow parameter q = q̂ in the definition of the damped
eigenspace, Xq̂, where q̂ is the pulse position corresponding to the base point p̂ = (q̂, r1, r2) constructed
in Proposition 3.1. To identify the duration of each renormalization interval, quantify the decay of the
remainder W over this interval, and control the growth of the oscillation amplitudes, we introduce the
quantities

TW (t) = sup
t0<s<t

eν(s−t0)‖W (s)‖H1 , (3.13)

Tq(t) = sup
t0<s<t

|q(s) − q̂|, , (3.14)

Tr(t) = sup
t0<s<t

|r(s)|. (3.15)

We recall the notation p = (q(t), r1(t), r2(t))
t for the evolving parameters and change variables as

~U(x, t) = Φp(x) + W (x,p), (3.16)

where W ∈ X−
q̂ . Returning to (2.12) we write the equation for the evolution of the remainder W as

Wt + ∇pΦpṗ = Lq̂W + ∆L W + LqH + N (H + W ), (3.17)

W (x, 0) = W0, (3.18)

p(0) = p̂, (3.19)

where W0 = W∗ + Φp0
− Φp∗

∈ X−
q̂ , and ∆L ≡ Lq − Lq̂ is the secularity implicit in the sliding of p away

from p̂.

To enforce W ∈ X−
q̂ we impose the non-degeneracy condition πq̂Wt = 0. Since πq̂ commutes with Lq̂ it

follows that π−
q̂ Lq̂W = Lq̂π

−
q̂ W = 0, while πqLqH = LqH(1). The non-degeneracy condition is equivalent to

the equations

πq̂

(
∇pΦpṗ− LqH − ∆L W + N (H + W )

)
= 0, (3.20)

where by slight abuse of notation we view π as mapping into R3 by reading off the coefficients of Ψk for
k = 0, 1, 2. Taking the equation term by term, we address first the dynamic term which we rewrite as

[
πq̂∇pΦpṗ

]

k
=
〈
∇pΦpṗ

∣∣∣Ψ†
k(q)

〉
+
〈
∇pΦpṗ

∣∣∣Ψ†
k(q̂) − Ψ†

k(q)
〉

, (3.21)

so that

πq̂∇pΦpṗ = (Π + (q̂ − q)Π′) ṗ + O(T 2
q |ṗ|), (3.22)

where Π given by (3.10) is independent of base-point and

[Π′]jk =

〈
∂pk

Φp

∣∣∣∣
(
Ψ†

j

)′
(q)

〉
. (3.23)
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Using the parity of the eigenfunctions, and the expressions (3.7-3.8) we see that

Π′ =




O(r2)
〈
Ψ1

∣∣∣Ψ†′
0

〉
+ O(r)

〈
Ψ1

∣∣∣Ψ†′
0

〉
+ O(r)〈

Ψ0

∣∣∣Ψ†′
1

〉
+ O(r3) O(r) O(r)〈

Ψ0

∣∣∣Ψ†′
2

〉
+ O(r3) O(r) O(r)


 (3.24)

The linear term gives the leading order dynamics on the tangent plane of the manifold,

[
πq̂LqH

]

k
=
〈
LqH

∣∣∣Ψ†
k(q)

〉
+ (q̂ − q)

〈
LqH

∣∣∣∣
(
Ψ†

k(q)
)′〉

+ O(T 2
q ). (3.25)

Writing in the vector notation, and using the identities πqH(2) = πqH(3) = 0 and the symmetries of Lemma
2.6, we find

πq̂LqH =




0
λ1r1

λ2r2


+ (q̂ − q)




∑2
k=1 λkrk

〈
Ψk

∣∣∣Ψ†′
0

〉

O(r2)
O(r2)


+ O(T 2

q ). (3.26)

Since ∆L is the difference of two smooth potentials evaluated at x−q and x− q̂, the secular term is estimated
as

|πq̂∆L W | ≤ cTq‖W‖H1 . (3.27)

Finally the nonlinearity takes the form

N (H + W ) = φqN2(H(1)) + N3(H(1)) + φqN s
2 (H(1),H(2)) + O(r4, r‖W‖H1) (3.28)

From Lemma 2.6 we know that N (H) is even about x = q while Ψ0(q̂) is odd, so at leading order the first
component vanishes, we find

πq̂N (H + W ) =




O(r‖W‖H1 , Tqr
2)〈

φqN2(H(1)) + N3(H(1)) + φqN s
2 (H(1),H(2))

∣∣∣Ψ†
1(q)

〉
+ O(r4, r‖W‖H1 , r2Tq)〈

φqN2(H(1)) + N3(H(1)) + φqN s
2 (H(1),H(2))

∣∣∣Ψ†
2(q)

〉
+ O(r4, r‖W‖H1 , r2Tq)


 . (3.29)

Combining the term-wise reductions of the non-degeneracy equation (3.20), and inverting the matrix Π, we
obtain the leading order pulse parameter evolution

ṗ = F(p) +




O
(
|r|Tq + (|r| + Tq)‖W‖H1

)

O
(
|r|2Tq + (Tq + |r|)‖W‖H1 + |r|4

)

O
(
|r|2Tq + (Tq + |r|)‖W‖H1 + |r|4

)


 , (3.30)

p(0) = p̂, (3.31)

where the leading order projected vector field F , broken down into terms that are linear, quadratic, and
cubic in r, is given by

F =




0
λ1r1

λ2r2


+




0〈
φqN2(H(1))

∣∣∣Ψ†
1(q)

〉
〈
φqN2(H(1))

∣∣∣Ψ†
2(q)

〉


+




0〈
N3(H(1)) + φqN s

2 (H(1),H(2))
∣∣∣Ψ†

1(q)
〉

〈
N3(H(1)) + φqN s

2 (H(1),H(2))
∣∣∣Ψ†

2(q)
〉


 . (3.32)

We denote the linear, quadratic, and cubic terms by F1,F2, and F3 respectively.

3.2. Normal form for the Poincaré-Hopf Bifurcation. Introducing the quantities

γjkl ≡
〈
φN2(Ψk, Ψl)

∣∣∣Ψ†
j

〉
, (3.33)

γjklm ≡
〈
φN2(Ψk,Hlm) + N3(Ψk, Ψl, Ψm)

∣∣∣Ψ†
j

〉
, (3.34)
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we can rewrite the projected evolution (3.30) as

ṙj = λjrj +
2∑

k,l=1

γkljrkrl +
2∑

k,l,m=1

γklmjrkrlrm + O
(
T 4

r , T 2
r Tq, ‖W‖H1Tr

)
, (3.35)

Defining

h20 = 2γ111, h11 = γ121 + γ211,
h02 = 2γ221, h30 = 6γ1111,
h21 = 2 (γ1121 + γ1211 + γ2111) , h12 = 2 (γ1221 + γ2121 + γ2211) ,
h03 = 6γ2221,

(3.36)

we rewrite (3.30) as

ṙ = λr +
∑

2≤k+l≤3

hkl

k!l!
rkrl + O

(
r4
)
, (3.37)

where λ = λ1 is the Hopf eigenvalue. We now apply the normal form, see Lemma 3.6 from [13], which
we restate below, to transform the evolution equation (3.37) for r into the Poincaré normal form for the
Poincaré-Hopf bifurcation.

Lemma 3.2. The equation (3.37) with λ = λ (γ), ℜλ (γc) = 0, ℑλ (γc) > 0, and hkl = hkl (γ), can be
transformed by the invertible parameter-dependent change of complex coordinate

r = v +
∑

2≤k+l≤3

jkl

k!l!
vkvl, (3.38)

with j21 = 0 into an equation with only the resonant cubic term

v̇ = λv + η|v|2v + O(v4), (3.39)

for all γ such that |γ − γc| is sufficiently small. Furthermore,

η (γ) =
h20h11

(
2λ + λ

)

2 |λ|2
+

|h11|2
λ

+
|h02|2

2
(
2λ − λ

) +
h21

2
, (3.40)

which, at the critical bifurcation value γc, reduces to

ηc(a) = η (γc(a)) =
i

2ℑλ (γc)

(
h20h11 − 2 |h11|2 −

1

3
|h02|2

)
+

h21

2
. (3.41)

If ℜη < 0, the Poincaré-Hopf bifurcation is supercritical, if ℜη > 0 the Poincaré-Hopf bifurcation is subcrit-
ical.

Numerical Result 3.3. The formal projected dynamics,

ṗ = F(p; γ), (3.42)

experience a super-critical Poincaré-Hopf bifurcation as γ increases through γc(a) for a > ac, where ac is
introduced in Numerical Result 2.1.

Discussion: The value of the coefficient ηc of the cubic term of (3.39 evaluated along the Hopf bifurcation
curve γ = γc(a), is given by (3.41). This was evaluated numerically along the Hopf bifurcation curve for
a ∈ (2.8, 4.9). The most technical aspect of the computation was solving for the Hopf eigenfunction Ψ1 and
the correction terms Hjk and Hjkl . As outlined in Numerical Result 2.1 the Hopf eigenfunction was computed
using a Dirichlet expansion on the stable manifold of the associated linearized eigenvalue problem. Moreover
the eigenfunction Ψ1 can be recovered from the kernel of the Evans function E at λ = λ1. Specifically the
kernel serves as an initial condition for Ψ1 at x = 0 for the first order evolution equation (2.20), see [6] for
details. On the other hand, the computation of the correction terms involved solving ODEs of the type

(Lq − µ)H = Z(y), (3.43)

where µ is the resonance. This was done using Matlab’s two-point boundary value problem solver bvp4c
with boundary conditions H = 0 and H′ = 0 at some sufficiently large y. The results are shown in Figure
3.1, which shows that ℜη (γc (a)) < 0 and the Poincaré-Hopf bifurcation is supercritical.
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Fig. 3.1. Hopf bifurcation constant η versus detuning parameter a along Hopf bifurcation curve.

3.3. Evolution of the Remainder. With the parameter evolution given by (3.30), which is equivalent
to the nondegeneracy condition (3.20), the evolution for the remainder W ∈ X−

q̂ is given by

Wt = Lq̂W + π−
q̂ (∆L W + LqH + N (H + W ) −∇pΦpṗ) , (3.44)

W (x, 0) = W0, (3.45)

where W0 and q̂ are given by (3.2). Motivated by the definition of the residual R, given in (2.40), we write

LqH + N (H + W ) −∇pΦpṗ = R + N (H + W ) −N (H) −∇pΦp

(
ṗ−F(r)

)
, (3.46)

where F is given by (3.32). For the nonlinearity we estimate

‖N (H + W ) −N (H)‖ ≤ c
(
|r|‖W‖H1 + ‖W‖2

H1

)
, (3.47)

while from (3.30) we see that the projected vector field, less its leading order terms, satisfies

|ṗ −F(r)| ≤ c
(
|r|4 + |r|‖W‖H1 + Tq(|r| + ‖W‖H1)

)
. (3.48)

From Lemma 2.6 the residual satisfies

‖πqR‖H1 ≤ c|r|4. (3.49)

We observe that

‖(π−
q − π−

q̂ )F‖H1 ≤ cTq‖F‖H1 , (3.50)

and hence

‖πq̂R‖H1 ≤ ‖π−
q R‖H1 + cTq‖R‖H1 ≤ c

(
|r|4 + |r|Tq

)
. (3.51)

Since the differential terms cancel in the secular operator ∆L, it acts as a multiplier operator with a smooth
potential which is O(Tq) in H1. The secular term satisfies the simple estimate

‖π−
q̂ ∆L W‖H1 ≤ cTq‖W‖H1 . (3.52)

Returning to (3.44) we write it as

Wt = Lq̂W + G, (3.53)

where G ∈ X−
q̂ satisfies

‖G‖H1 ≤ c
(
|r|4 + |r|Tq + (|r| + Tq)‖W‖H1 + ‖W‖2

H1

)
. (3.54)
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To estimate the distance Tq that the pulse has moved from its base point we examine the projected
evolution equation (3.30). The drift of the pulses is controlled by their speed,

Tq(t) ≤
t∫

t0

|ṗ1(s)|ds, (3.55)

≤
t∫

t0

c ((Tr(s) + ‖W (s)‖H1)Tq(s) + ‖W (s)‖H1Tr(s)) ds, (3.56)

≤
t∫

t0

c
(
(Tr(t) + e−ν(s−t0)TW (t))Tq(s) + e−ν(s−t0)TW (t)Tr(t)

)
ds, (3.57)

where we have introduced ∆t = t − t0. From the integral Gronwall estimate we see that

Tq(t) ≤ ce∆tTr(t)+TW (t)TW (t)Tr(t). (3.58)

For ∆t ≤ 1/Tr(t) and TW ≤ 1 we may replace this estimate with

Tq(t) ≤ cTW (t)Tr(t). (3.59)

The variation of constants formula applied to (3.53) yields the solution

W (x, t) = S(∆t)W0 +

t∫

t0

S(t − s)G(s) ds, (3.60)

Taking the H1-norm of variation of constants solution for W , (3.60), and using the estimates (3.54) and
(3.59) we obtain

‖W (t)‖H1 ≤ M


e−ν∆t‖W (t0)‖H1 +

t∫

t0

e−ν(t−s)
[
T 4

r + T 2
r TW + Tr‖W‖H1 + ‖W‖2

H1

]
(s) ds


 . (3.61)

We denote by τ ≡ t0 + ∆t the as yet undetermined time at which we update the base point from q̂0 to q̂1.
To estimate the decay of ‖W‖H1 over this time period we multiply (3.61) by eν(t−t0). Taking the sup over
t ∈ (t0, t0 + τ) yields

TW (τ) ≤ M


TW (t0) +

τ∫

t0

[
eν(s−t0)

(
Tr(τ)4 + T 2

r TW (τ)
)

+ TrTW (s) + e−ν(s−t0)T 2
W (s)

]
ds


 , (3.62)

≤ M
(
TW (t0) + eν∆tT 4

r (τ) +
(
eν∆tT 2

r (τ) + ∆tTr(τ)
)
TW (τ) + T 2

W (τ)
)
. (3.63)

For ∆t <
| ln 4MT 2

r (τ)|
ν the term M

(
eν∆tT 2

r (τ) + ∆tTr(τ)
)

< 1
2 and we may eliminate the linear term in

TW from the right-hand side. With this reduction (3.63) becomes

TW ≤ 2M
(
TW (t0) + eν∆tT 4

r (τ) + T 2
W

)
. (3.64)

The quadratic equation in TW

0 = TW (t0) + eν∆tT 4
r − 1

2M
TW + T 2

W , (3.65)

has two positive real roots so long as TW (t0) + eν∆tT 4
r ≪ 1. The smaller of these roots, ξ0 takes the form

ξ0 = 2M
(
TW (t0) + eν∆tT 4

r

)
) + O

(
TW (t0) + eν∆tT 4

r

)2

, (3.66)

14



while the larger is

ξ1 =
1

2M
+ O

(
TW (t0) + eν∆tT 4

r

)
. (3.67)

Thus if TW (t0) ≪ 1 and eν∆tT 4
r (τ) ≪ 1 then there is an excluded region, either 0 < TW < ξ0 or

ξ1 < TW < ∞. Since TW (t0) < ξ0 and TW is continuous in t, we see that

TW (τ) ≤ ξ0 ≤ M(TW (t0) + eν∆tT 4
r (τ)) (3.68)

so long as

∆t ≤ 4β| lnTr|
ν

(3.69)

for any fixed β < 1. This condition on ∆t prevents the secularity from dominating the linear operator, in
particular it is a stronger condition on ∆t than that imposed after equation (3.63) so long as 2β > 1 and Tr

is small enough. This implies that

‖W (·, t)‖H1 ≤ M
(
e−ν(t−t0)‖W (·, t0)‖H1 + T 4

r

)
, for t ∈

(
t0, t0 +

4β| lnTr(τ)|
ν

)
(3.70)

and in particular for t1 = t0 + ∆t,

‖W (·, t1)‖H1 ≤ M
(
T 4β

r ‖W (·, t0)‖H1 + T 4
r

)
. (3.71)

Turning to the oscillation amplitude r, we see from Lemma 3.2 that |v| = |r| + O(|r|2). By abuse of
notation we replace v with r which satisfies

ṙ = λr + η|r|2r + O
(
|r|2Tq + (|r| + Tq)‖W‖H1 + |r|4

)
. (3.72)

We eliminate Tq using (3.59) and take the real part of the dot product with r to find

1

2
∂t|r|2 = ǫ|r|2 + ℜη|r|4 + O

(
|r|3TrTW + |r|(|r| + TrTW )‖W‖H1 + |r|5

)
, (3.73)

where ℜη < 0 is uniformly o(1). Introducing ρ = |r|2 + ǫ
ℜη

, we rewrite (3.73) as

1

2
ρ̇ = −ǫρ + ℜηρ2 + O

(
|r|3TrTW + |r|(|r| + TrTW )‖W‖H1 + |r|5

)
. (3.74)

The time scale for the evolution of ρ, ρ̇/ρ is O(ǫ + ℜη|r|2 + ‖W‖H1) while ∆t = O(| lnTr|) so that over
the length of one renormalization period ρ is constant at leading order, and we replace Tr with r in (3.74),
obtaining

1

2
ρ̇ = −ǫρ + ℜηρ2 + O

(
|r|4(TW + |r|) + |r|2‖W‖H1). (3.75)

We observe that if |r(t0)| > 2
√
− ǫ

ℜη
then ρ > 1

2 |r|2 and for TW and |r| are sufficiently small, independent

of ǫ, the first term in the error is dominated by ℜηρ2 < 0, yielding

ρ̇ ≤ −2ǫρ +
3

2
ℜηρ2 + O

(
|r|2‖W‖H1

)
. (3.76)

For |r| and ‖W‖H1 small compared to 1/| lnTr| and 1, but ‖W (t0)‖H1 > |r|3−β , then the error term on the
right-hand side of (3.76) may dominate and we have the estimate

|r(τ)|2 ≤ |r(t0)|2 + c

τ∫

t0

e−ν(s−t0)|r(s)|2TW (τ)ds, (3.77)
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which simplifies to

|r(τ)| ≤ |r(t0)| + c|r(t0)|2. (3.78)

However if |r(t0)| > 2
√
− ǫ

ℜη
but ‖W (t0)‖H1 < |r|3−β , then the error term on the right-hand side of (3.76)

is dominated and we have

˙|r| ≤ −
(

ǫ − ℜη

2
|r|2
)
|r|, (3.79)

and hence

|r(τ)| ≤ |r(t0)|e
−

4β
ν
∣∣ln |r(t0)|

∣∣
(

ǫ− 1

2
ℜη|r(t0)|

2

)

. (3.80)

Finally if |r(t0)| < 2
√
− ǫ

ℜη
then ρ does not control |r| effectively, and we obtain the result (3.78).

3.4. The RG Map. We break the time evolution into a series of initial value problems, tracking the
decay of the remainder and the over the long-time scale of many RG iterations. We fix β < 1 and define the
renormalization times sequentially

tn+1 = tn +
4β| log rn|

ν
, (3.81)

where rn = |r(tn)|. We break the evolution of W and r into disjoint intervals In = [tn, tn+1). On each
interval In we solve the initial value problems (3.44-3.45) and (3.30-3.31) with initial data W (tn) ∈ X−

qn
and

pn. The quantities TW (n), Tr(n), and Tq(n) corresponding to (3.13-3.15) over In. The renormalization map

takes the initial data,
(
W (tn−1),pn−1

)t

for the initial value problem on interval In−1 and returns the initial

data
(
W (tn),pn

)t

for the initial value problem on the interval In,

R
(

W (tn−1)
pn−1

)
=

(
W (tn)

pn

)
. (3.82)

Since both W0 and r are initially small, we may choose β sufficiently close to 1 so that

‖W0‖H1 ≤ |r(t0)|4−4β . (3.83)

Arguing inductively, we assume that (3.83) holds for all n where the initial data p(tn) = (q(tn), r1(tn), r2(tn))
and the new base point q̂n = p1(tn) are obtained from W (t−n ) and p(t−n ), the end-values of the evolution of
W and p over In−1, by applying Proposition 4.1. Indeed we see that W (t−n ) ∈ X−

qn−1
and so from (3.3) we

have

‖pn − p(t−n )| ≤ M0‖W (t−n )‖H1 |p(t−n ) − p(tn−1)| ≤ M0‖W (t−n )‖H1Tq(n − 1). (3.84)

From the inductive assumption (3.83) we see that the bound (3.70) on TW implies that

TW (n) ≤ M(‖Wn−1‖H1 + T 4−4β
r ) ≤ MT 4−4β

r (n). (3.85)

From the estimate (3.59) on Tq(n − 1), (3.71) on W , and (3.85) on TW , we bound the jump in p at
renormalization by

|pn − p(t−n )| ≤ MTW (n − 1)Tr(n − 1)‖W (t−n )‖H1 , (3.86)

≤ MT 4(1−β)
r Tr

(
T 4β

r ‖Wn−1‖H1 + T 4
r

)
, (3.87)

≤ MT 5
r (n − 1). (3.88)

The solution at time t = tn is independent of the decomposition,

~U(tn) = Φ
p(t−n ) + W (t−n ) = Φpn

+ Wn, (3.89)
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and we may bound the jump in W at each renormalization

‖W (t−n ) − W (tn)‖H1 = ‖Φ
p(t−n ) − Φpn

‖H1 ≤ c|pn − p(t−n )| ≤ MT 5
r (n − 1). (3.90)

Combining the estimates (3.88) and (3.70), we obtain a bound on Wn = W (tn),

‖Wn‖H1 ≤ ‖W (t−n ) − Wn‖H1 + ‖W (t−n )‖H1 ≤ M
(
T 5

r + T 4β
r ‖Wn−1‖H1 + T 4

r

)
≤ MT 4

r , (3.91)

which amply verifies the inductive hypothesis.

Turning again to the oscillation amplitudes rn = |r(tn)| we see from (3.90) that for all n > 0 we have

‖Wn‖H1 ≤ Mr4
n and hence from (3.80), so long as rn > 2

√
− ǫ
ℜη ,

rn ≤ r
1− 4β

ν (2ǫ−ℜη
2

r2

n−1)
n−1 . (3.92)

Introducing ξ(t) a continuous time upper bound for rn we see that

ξ(tn) − ξ(tn−1)

tn − tn−1
= −

4β
ν

(
ǫ − ℜη

2 ξ2(tn−1)
)

4β
ν
| ln ξ(tn)|

ξ(tn−1), (3.93)

which suggests the RG equation for an upper bound on the amplitude

ξ′(t) = −

(
ǫ − ℜη

2 ξ2
)

| ln ξ| ξ. (3.94)

So that either rn ≤ ξ(tn) or rn ≤ 2
√
− ǫ
ℜη

. In particular there exists an M > 0 such that

|r(t)| ≤ M
(
e−ǫ(t−t0)|r0| +

√
ǫ
)

, (3.95)

which yields the results (1.3-1.4) in Theorem 1.1.
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