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Abstract. We derive the curvature driven flow of closed-loop pore structures which arise a
quasi-stationary states in the H−1 gradient flow of the Functionalized Cahn-Hilliard free energy
which models amphiphilic mixtures. We extend this result to a sharp-interface reduction for the
competitive evolution of disjoint collections of bilayer interfaces and closed-loop pores. In particular,
for a mixture of spherical bilayers and circular, closed pores we explicitly identify two regimes:
one in which spherical bilayers extinguish and the circular pores arrive at a common radius, and
a complimentary regime in which spherical bilayers of differing radii stably coexist with common-
radius, closed-loop, circular pores.

1. Introduction. Amphiphilic molecules, commonly used as surfactants, pos-
sess a hydrophilic and a hydrophobic moiety; when mixed with a suitable solvent the
amphiphilic molecules form molecular-width bilayer interfaces and pore structures
which interpenetrate the bulk regions of the solvent phase. The amphiphilic nature of
the surfactant phase drives interfacial dynamics that are fundamentally different from
those observed in mixtures of mutually non-wetting phases. Indeed, the surfactant
phase seeks to maximize the interface between hydrophilic groups and solvent, subject
to the constraint imposed by available surfactant volume.

In energy conversion materials, such as polymer electrolyte membranes, hydrophilic
head groups are tethered to spatially extended hydrophobic polymers, forming an am-
phiphilic matrix which imbibes solvent, forming counter-ion conducting networks of
solvent-filled pores with dominant length-scales ranging from 1-4 nanometers and sol-
vent accessible surface areas as large as 1000m2 per gram of material, see [22], [29],
[30], and [31]. In this context the solvent is the scarce minority phase, whose vol-
ume is restricted by the elastic nature of the polymer electrolyte matrix which resists
swelling.

In a biological setting amphiphilic materials include lipids, small bi-phasic molecules
with a polar head group which attracts a hydration sphere of solvent molecules and
a “greasy” or “hydrophobic” tail which mixes poorly with solvent. The hydrophobic
groups agglomerate with the polar head-groups pointing outwards so as to interact
with the solvent, while the hydrophobic tails lie in a solvent-excluded region. The
classic morphology is the bilayer membrane, in which two sheets of lipids align along
a co-dimension one hypersurface.When the center-line hypersurface is closed, the re-
sulting structure is called a liposome or vesicle. However the lipids can also assemble
into cylindrical pore-like structures, or into spherical micelles with the tails filling the
interior, see Figure ??.

In recent work, Budin and Szostak [1] investigated the dynamics and division of
primitive cellular membranes, comprised primarily of single-chain lipids. They de-
scribe the so-called ”phospholipid war” in which cells with higher concentrations of
phospholipids are more successful in attracting and retaining lipids from the ambi-
ent environment. They propose that the resulting selective advantage would drive
cells to maximize their phospholipid content, leading them to more closely resemble
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modern cellular membranes. They also propose a route for cell division in primitive
cells via the bifurcation of spherical bilayer (liposome) into cylindrical pores, which
they induce by varying the concentration free lipids within the solvent phase. Similar
budding bifurcations in amphiphilic diblock copolymers are obtained by varying sur-
factant concentrations, see Figure 1 of [33]. Motivated in part by these experiments
we derive a curvature driven sharp-interface flow for closed cylindrical pores under the
functionalized Cahn-Hilliard gradient flow, and investigate the competitive geometric
evolution of co-existing liposomes (closed bilayers) with closed cylindrical pores. Our
central result describes the role that the ’background’ or ’far-field’ value of the sur-
factant phase residing within the dominant phase has on the competitive evolution of
distinct morphologies, particularly bilayer and pore structures.

1.1. Description of the functionalized Cahn Hilliard free energy. The
functionalized Cahn-Hilliard (FCH) free energy models the free energy of a binary
mixture of a surfactant phase and a solvent. It incorporates hydrophilic interactions
by lowering the free energy in response to the creation of surfactant-wetted surface
area, however it respects the molecular structure of the surfactant phase by penalizing
surfactant interfaces which are too thin. The FCH free energy is a reformulation of
the classical Cahn-Hilliard free energy, [2],

E(u) =

∫
Ω

ε2

2
|∇u|2 +W (u) dx (1.1)

which assigns energy to binary mixtures over a domain Ω ⊂ R3 in terms of the volume
fraction u ∈ H1(Ω). The mixing potential W : R 7→ R describes the compatibility
of the two phases, and is assumed to have two successive local minima at b− < b+
with unequal depths W (b−) = 0 > W (b+), and a transverse intermediate zero at
um ∈ (b−, b+). Morever we assume the minima are non-degenerate, with α± :=
W ′′(b±) > 0.

The Cahn-Hilliard free energy supports many critical points which are zeros of
the L2(Ω) variational derivative of the Cahn-Hilliard energy

δE
δu

(u) := −ε2∆u+W ′(u) = 0. (1.2)

When subject to a total mass constraint∫
Ω

u dx = M, (1.3)

for a prescribed M ∈ R, the local minimizers of the Cahn-Hilliard free energy include
single-layer interfaces, Us, which separate bulk phases of u = b− from u = b+ across
an order of ε width interface. At leading order the single layer interface solves the
one-dimensional equilibrium equation

∂2
zUs = W ′(Us) + λ, (1.4)

where z is ε-scaled distance to the mid-point of the interface and the Lagrange multi-
plier λ, dual to the mass constraint, takes the critical value for which (1.4) supports a
heteroclinic connection. However the Cahn-Hilliard free energy also supports a wide
variety of saddle point structures, among these are bilayer interfaces Ub which solve

∂2
zUb = W ′(Ub), (1.5)
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subject to the homoclinic conditions, U = b− at z = ±∞. These interfaces are also
order of ε in width but separate two regions of u = b− by a thin co-dimension one
surface on which u approaches the intermediate zero, u = um ∈ (b−, b+), of W . Saddle
point structures can also be formed from cylindrically symmetric critical points, which
we term pore solutions. Indeed, fixing a co-dimension two interface, Γp, which defines
the center-line of the pore structure, and introducing R, the ε scaled radial distance
to a Γp, the associated pore profile Up solves the radial version of (1.2),

∂2
RUp +

1

R
∂RUp = W ′(Up), (1.6)

subject to the boundary conditions ∂RUp(0) = 0 and Up → b− as R→∞. The saddle
point structures of E have compelling agreement with the morphologies generated by
amphiphilic mixtures, see [20], [21], and [33] for experimental examples, in particular
they possess a very large ratio of surface area to volume of minority phase. However
the large surface area saddle-point structures are wildly unstable under gradient flows
of the Cahn-Hilliard energy.

The functionalized Cahn-Hilliard free energy, proposed in [13], stabilizes the high-
surface area saddle point structures of the Cahn-Hillard energy. It takes the form

F(u) :=

∫
Ω

1

2

(
δE
δu

)2

− ε2

(
η1
ε2

2
|∇u|2 + η2P (u)

)
dx, (1.7)

and is naturally considered subject to a constraint on total mass over a function
space H2

N (Ω) where the N subscript denotes zero-flux boundary conditions, such as
periodic or homogeneous Neumann (~n · ∇u = 0 on ∂Ω). The dominant term in
the FCH free energy, referred to loosely as the Willmore contribution, is the square
of the L2(Ω) variational derivative of the Cahn-Hilliard energy given in (1.2). The
Willmore contribution is minimized at any critical point of the Cahn-Hilliard energy;
the functionalization terms, multiplied by the ε2 prefactor, perturbatively reward
critical points of E with “desirable” features. There are two natural scalings for the
prefactor: the weak functionalization, taken here and in Γ-limit scalings, selects an ε2

prefactor which balances with the O(ε) residuals appearing in δE
δu . This scaling leads to

morphological competition on the O(ε−2) time scale which is nonlinear in curvature.
The strong functionalization, considered in [9] sets the perturbation prefactor as ε,
so that the functionalization terms dominate the Willmore residual, leading to a
morphological competition on the O(ε−1) time-scale which is linear in curvature.

For η1 > 0, the first functionalization term assigns lower free energy to critical
point structures of the Cahn-Hilliard free energy with large surface area. As a model of
amphiphilic mixtures, this corresponds to the energetic preference for the surfactant
phase to spread out in a thin interfacial layer whose extend is constrained by the
volume of surfactant and by their molecular width, [14]. Within the framework of
the FCH free energy, the molecular width is described by the width of the bilayer,
Ub, and pore, Up, profiles. The second perturbative term incorporates pressure jumps
between solvent and surfactant phases, which are taken to depend upon mixture
concentrations through a multiple, η2 ∈ R, of the capillary pressure P = P (u). In the
sequel we choose the functional form P (u) = W (u) for convenience, as it simplifies the
evaluation of several integrals, see [14] for further discussion of the molecular origins
of the pressure term. A related free energy expression for amphiphilic mixtures was
derived in [15] from an examination of the small angle x-ray scattering (SAXS) data,
with the primarily distinction being that the well, W , was piece-wise linear.
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Single layer interfaces have been employed to describe a wide range of physical
phenomena. Higher order free energies, similar to the FCH with the significant ex-
ception that η1 < 0 and the mixing well W is untitled, have been proposed, see [23]
and [32]. Indeed, the De Giorgi conjecture, which concerns the Γ limit of the FCH
energy for η1 < 0 with an untilted well has been established, [28]. Extensions of these
models to address deformations of elastic vesicles subject to volume constraints, [11],
and multicomponent models which incorporate a variable intrinsic curvature have
been investigated, [24]. However, the single-layer interface forms the essential under-
pinning of each of these models. For amphiphilic materials, with η1 > 0 the FCH
energy landscape is fundamentally different. Indeed, for fixed ε > 0 the FCH energy
is bounded below and has global minimizers, see [27], however for η1 > 0 the lower
bound tends to −∞ as ε → 0+ for fixed volume fraction. A Γ-limit analysis of the
FCH will require new ideas, particularly since defect structures, such as end-caps and
junctions, may form spatially dense sets as ε→ 0+.

1.2. Main Results. This paper addresses the competitive evolution of bilayer
and pore structures under the Functionalized Cahn-Hilliard equation: the H−1 gra-
dient flow of the FCH energy

ut = ∆

µ:= δF
δu︷ ︸︸ ︷{(

−ε2∆ +W ′′(u)− ε2η1

) (
−ε2∆u+W ′(u)

)
+ ε2(η1 − η2)W ′(u)

}
, (1.8)

over a function space H6
N (Ω) where the N subscript denotes zero-flux boundary con-

ditions, such as periodic or homogeneous Neumann (~n · ∇u = ~n · ∇∆u = ~n · ∇µ = 0
on ∂Ω) boundary conditions.

We consider the evolution of a disjoint family of co-dimension one bilayer mor-
phologies, with center-line hypersurface Γb ⊂ R3 together with a disjoint family of
co-dimension two pore morphologies, with center-curve Γp ⊂ R3, which are far from
self-intersection, or from intersecting each other, as measured in the ε-scaled distance.
A key result is that, away from the interfaces, the chemical potential is spatially con-
stant,

µ(t) := µ0 + εµ1(t) + ε2µ2(t) +O(ε3),

and moreover the competitive evolution of the interfaces is mediated through this
far-field value of the chemical potential, which we show is proportional to the density
of surfactant (lipids) in the bulk (solvent) phase. We say that the interfaces Γb and Γp
are at quasi-equilbrium if their dynamics are at equilibrium on the O(ε−1) time-scale,
equivalently if µ0 = µ1 = 0, see (5.41) and (1.7)-(1.8) of [8].

In [8] we derived the evolution of a disjoint family of closed, co-dimension one bi-
layers interfaces in Rn. On the t2 := ε2t time-scale, the interface Γb evolves according
to a Willmore-type flow with normal velocity prescribed by

Vb =
σb
mb

(
∆s +K − 1

2
H2 +

η1 + η2

2
+ λbµ2

)
H, (1.9)

where for n = 3, the total and quadratic curvatures H = k1 + k2 and K = k2
1 + k2

2,
are defined in terms of the principle curvatures ki, i = 1, 2 of Γb. The operator ∆s is
the Laplace-Beltrami operator associated to Γb, and

mb :=

∫
R
Ûb(z) dz, λb :=

2mb∫
R |Û

′
b|2 dz

, σb :=
mb

∫
R |Û

′
b|2 dz∫

R |Ûb|2 dz
, (1.10)
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are positive constants determined solely by the double well potential W in the FCH
energy through the bilayer profile Ûb := Ub − b−. In particular mb denotes the
mass of surfactant per unit area of bilayer. For single-layer interfaces, the interface
evolution is governed by a Mullins-Sekerka flow, as in [25]. For bilayers the Mullins-
Sekerka problem is trivial, leading to a spatially constant chemical potential, µ2 =
µ2(t2), whose value is determined by conservation of total mass. The end result is
an interfacial-area preserving Willmore flow: the collection of bilayers evolves under
(1.9) with µ2 determined so that the total surface area is unchanged.

In this work, we first establish the geometric evolution of a collection of disjoint
closed-loop pores in R3, characterized by a co-dimension two interface Γp. Subse-
quently we show that the geometric evolution of co-existing pore and bilayer structures
is mediated through the common value of the far-field chemical potential, µ2 = µ2(t2),
which is proportional to the ambient level of surfactant phase in the solvent domain.
Our results are formal, and in particular we assume that the bilayer and pore profiles
are stable. It is known that the sole mechanism for linear instability of a bilayer
interface is through high-frequency, in-plane modulations of the bilayer width, called
a pearling instability, [17], detailed conditions under which the pearling instability
are manifest have been determined for both the strong and weak functionalization,
[9, 10].

Theorem 1.1. We assume that the pore and bilayer morphologies are stable with
respect to the pearling instability. Then on the slow, t2 = ε2t time-scale the evolution
of well-separated, quasi-equilibrium bilayer and pore structures, with center interface
Γb and center line Γp, is given by (1.9) coupled to the vector normal velocity of pore
structures

Vp = − σp
mp

(
∂2
s +

1

4
|~κ|2 + η1 + λpµ2

)
~κ, (1.11)

where mp := 2πS1, the mass per unit length of pore, and the positive constants σp :=
2πS1S4/S2 and λp := 2S1/S4 depend upon the double well, W , through the pore
profile, Up, defined in (1.6), via the relations (4.23) and (6.24). The vector normal
velocity Vp and vector curvature ~κ = (κ1, κ2)t are taken in the coordinate system of
Lemma 2.2, see also (6.34). The coupling between the bilayer and pore morphologies
is through the spatially constant value of µ2 = µ2(t2), which is determined from the
mass constraint

0 = mb
d

dt
|Γb|+mpε

d

dt
|Γp| = mb

∫
Γb

Vb(S)H(S) dS−mpε

∫
Γp

Vp(s) ·~κ(s) ds. (1.12)

For a collection of spherical bilayers and circular pores the evolution reduces to
system of ODEs for the radii given by (7.10)-(7.11) coupled through (7.12). In par-
ticular if the bifurcation parameter,

ν := (λp − 2λb)η1 + λpη2, (1.13)

satisfies ν < 0, then the circular pores will grow until the spherical bilayers extinguish,
while if ν > 0 then there are asymptotically stable configurations of coexisting circular
pores with common radius and spherical bilayers with arbitrary radii.

In section 2 we establish the coordinate system for the co-dimension two struc-
tures and introduce the near and far field expansions for the chemical potentials and
pore profile. In section 3 we address the relaxation of the FCH equation for initial
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data in the neighborhood of a pore structure, on the fast T2 = t/ε2 time scale. In
section 4 we address the t = O(1) time scale, deriving a free surface problem which
possesses spatially constant outer solutions. In section 5 we address the t1 = εt
time-scale, deriving a coupled system, (5.31) and (5.41), for the normal velocity and
far-field chemical potential. The curvature driven flow is quenched by the chemical
potential, whose expression of mass conservation serves to arrest the flow, driving it
to equilibria. In section 6 we analyze the t2 = ε2t time-scale, deriving the length-
preserving Wilmoresque flow (6.45) for well-separated, closed-loop pores. In section 7
we couple the evolution of the closed-loop pores to that of bilayers derived in [8]. The
resulting evolution, coupled through the mass constraint (1.12), is further reduced
and analyzed for the special case of spherical bilayers and circularly symmetric pore
structures.

2. Moving frame, inner expansion, and normal derivatives. We first ad-
dress the co-dimension two structures. We consider a smooth, closed curve, Γ ⊂ R3

parameterized by φ

Γ(t) =
{
φ(s, t) : [0, L(t)]× [0, T ] 7→ R3

∣∣ φ(0, t) = φ(L(t), t))
}
, (2.1)

where s denotes arc-length and L = L(t) is the total curve length. At a given point on
Γ, the unit tangent vector T, the principal normal vector N and the binormal vector
B defined by

T =
∂φ

∂s
, N =

∥∥∥∥∂T

∂s

∥∥∥∥−1
∂T

∂s
, B = T×N, (2.2)

form the Frenet-Serret frame. For fixed t the vectors are coupled via the curvature,
κ, and torsion τ of the curve, The Frenet-Serret formulas are

∂T

∂s
= κN, (2.3)

∂N

∂s
= −κT + τB, (2.4)

∂B

∂s
= −τN. (2.5)

The {T,N,B} coordinate system is not convenient for our calculations due to
the asymmetry of the roles played by N and B. To circumvent this, we define a new
coordinate system, {T,N1,N2} such that at each point φ(s, t) on the curve Γ(t) the
vectors {N1,N2} form an orthonormal basis for the normal plane and

∂Ni

∂s
= −κiT, i = 1, 2, (2.6)

where ~κ(s, t) := (κ1, κ2)t is the normal curvature vector with respect to {N1,N2}.
The same orthonormal basis has been used by Calini and Ivey for the study of the
motion of thin vortex filaments in an ideal fluid [3]. Here we include an existence
result in the general setting.

Lemma 2.1. Let M ∈ R2×2 satisfy the differential equation

d

ds
M(s) =

(
0 τ(s)

−τ(s) 0

)
M(s), (2.7)
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subject to initial data M(0) = M0. If M0 is orthonormal, then so is M and the vectors
{N1,N2} defined by (

N1(s),N2(s)
)

:=
(
N(s),B(s)

)
M(s), (2.8)

form an orthonormal basis for the normal plane and satisfy (2.6) with

κi(s) = M1i(s)κ(s), (2.9)

for i = 1, 2..
Proof. Let the initial data M0 be an orthonormal matrix, and let M be the

corresponding solution of (2.7). We observe that d
ds (M tM) = 0 and since M t

0M0 = I,
we have M tM = I for all s, that is, M(s) is orthonormal. The vectors {N1,N2}
defined by (2.8) are orthonormal and lie in the normal plane to Γ at s, hence they
span the plane. In addition, taking ∂s of (2.8) and using the Frenet relations (2.3)-
(2.5) and (2.6) we find

∂Ni

∂s
= M ′1iN +M ′2iB +M1i

∂N

∂s
+M2i

∂B

∂s
,

= τM2iN− τM1iB +M1i (−κT + τB)−M2iτN = −κiT,

which establishes (2.6) for κi defined in (2.9).
We define the normal velocity V = (V1, V2)t of the point φ(s, t) on Γ(t) via

Vi := Ni · ∂φ
∂t

(s, t), (2.10)

for i = 1, 2. The following lemma demonstrates the utility of the {T,N1,N2} coordi-
nates.

Lemma 2.2. The {T,N1,N2} coordinate system satisfies

∂T

∂s
= κ1N

1 + κ2N
2, (2.11)

while the curve length evolves according to

d|Γ|
dt

= −
∫

Γ

V · ~κ ds. (2.12)

Proof. Taking ∂s of T ·T = 1 we see that ∂T
∂s ·T = 0 and hence ∂T

∂s = a1(s)N1 +
a2(s)N2 for some functions a1(s), a2(s). Moreover, taking ∂s of 0 = T ·Ni, we arrive
at the relation

0 =
∂T

∂s
·Ni + T · ∂Ni

∂s
= ai(s)− κi, (2.13)

and hence ai = κi.
To calculate the change in curve length it is convenient to parametrize the family

of curves {Γ(t) : t0 − δ < t < t0 + δ} by a common parameter ξ ∈ [a, b]:

Γ(t) = {γ(ξ, t) : ξ ∈ [a, b]} for all t ∈ (t0 − δ, t0 + δ). (2.14)

We take ξ to be arc length parameter at t = t0. It follows that

|Γ(t)| =
∫ b

a

∥∥∥∥∂γ∂ξ (ξ, t)

∥∥∥∥ dξ,
7



and taking the time derivative we find

d|Γ|
dt

=

∫ b

a

∂

∂t

∥∥∥∥∂γ∂ξ (ξ, t)

∥∥∥∥ dξ =

∫ b

a

∥∥∥∥∂γ∂ξ (ξ, t)

∥∥∥∥−1
∂γ

∂ξ
· ∂

2γ

∂ξ∂t
dξ

= −
∫ b

a

∂

∂ξ

(∥∥∥∥∂γ∂ξ (ξ, t)

∥∥∥∥−1
∂γ

∂ξ

)
· ∂γ
∂t

dξ, (2.15)

where the boundary terms canceled in the integration by parts since Γ(t) is smooth
and closed. Since ξ corresponds to arc length at t = t0, we have

∂γ

∂ξ
(ξ, t0) = T,

∥∥∥∥∂γ∂ξ (ξ, t0)

∥∥∥∥ = 1, (2.16)

and substituting t = t0 in (2.15) yields

d|Γ|
dt

(t0) = −
∫ b

a

∂T

∂ξ
· ∂γ
∂t

dξ = −
∫ b

a

(κ1N
1 + κ2N

2) · ∂γ
∂t

dξ,

= −
∫ b

a

(κ1V1 + κ2V2) dξ = −
∫

Γ

(κ1V1 + κ2V2) ds. (2.17)

Assuming that Γ is smooth, then from the Implicit Function theorem there is a
neighborhood Γ` ⊂ R3 of Γ such that each x ∈ Γ` can be uniquely represented as

x = φ(s, t) + r1N
1(s, t) + r2N

2(s, t) (2.18)

where s = s(x, t) and ~r = (r1(x, t), r2(x, t)) are as smooth as γ′. In the rescaled normal
coordinates z = (z1, z2)t := ε−1~r we have the following identities.

Lemma 2.3. Fix Γ and assume that ` is so small that ‖~κ‖L∞(Γ)` < 1. Then on
Γ`, the change of variables (x, t) 7→ (s, z, t) transforms the Cartesian Laplacian to

∆x = ε−2∆z − ε−1 ~κ

1− εz · ~κ
· ∇z +

1

(1− εz · ~κ)2
∂2
s +

εz · ∂s~κ
(1− εz · ~κ)3

∂s, (2.19)

while the normal velocity V takes the form

V1 = −ε∂z1

∂t
+ εz2N

2 · ∂N1

∂t
, (2.20)

V2 = −ε∂z2

∂t
+ εz1N

1 · ∂N2

∂t
. (2.21)

Moreover the Jacobian associated to the change of variables takes the form

J(s, z) = ε2 − ε3z · ~κ. (2.22)

Proof. The relation (2.19) follows from a standard calculation. To obtain the
normal velocity expressions we re-write (2.18) as

εz1(x, t) = (x− φ(s, t)) ·N1(s, t), εz2(x, t) = (x− φ(s, t)) ·N2(s, t). (2.23)

Taking ∂t of the z1 equation we find

ε
∂z1

∂t
=

(
−∂φ
∂s

∂s

∂t
− ∂φ

∂t

)
·N1 + (x− φ(s, t)) ·

(
∂N1

∂s

∂s

∂t
+
∂N1

∂t

)
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=

(
−T

∂s

∂t
− ∂φ

∂t

)
·N1 + ε(z1N

1 + z2N
2) · (−κ1T

∂s

∂t
+
∂N1

∂t
)

= −∂φ
∂t
·N1 + εz2N

2 · ∂N1

∂t
. (2.24)

The relations (2.10) yield (2.20), and the derivation of (2.21) is similar. The Jacobian
matrix takes the form

J =
∂x

∂(s, z1, z2)
=
(
(1− εz1κ1 − εz2κ2)T, εN1, εN2

)
, (2.25)

and evaluating the determinant yields (2.22).

Remark 2.4. The terms z2N
2 · ∂N

1

∂t and z1N
1 · ∂N

2

∂t in (2.20) and (2.21) reflect
lower order contributions to the normal velocity induced by the rotational motion of
the curve Γ(t).

For notational convenience we introduce

∆0 :=
∂2

∂s2
− (z · ~κ)~κ · ∇z, (2.26)

are rewrite the Cartesian Laplacian expansion, (2.19) in the more compact form

∆x = ε−2∆z − ε−1~κ · ∇z + ∆0 + ε∆1 +O(ε2), (2.27)

where the precise form of ∆1 and lower order terms is immaterial for the analysis.
Considering a time scale t̃, we have the formal inner expansion of a quantity v

v(x, t) = ṽ(s, z, t) = ṽ0 + εṽ1 + ε2ṽ2 + ε3ṽ3 +O(ε4), (2.28)

where ṽi = ṽi(s, z, t̃). The Cartesian Laplacian of v then admits the inner expansion

∆xv = ε−2∆z ṽ − ε−1~κ · ∇z ṽ + ∆0ṽ +O(ε)

= ε−2∆z ṽ0 + ε−1 (∆z ṽ1 − ~κ · ∇z ṽ0) + (∆z ṽ2 − ~κ · ∇z ṽ1 + ∆0ṽ0)

+ ε (∆z ṽ3 − ~κ · ∇z ṽ2 + ∆0ṽ1 + ∆1ṽ0) +O(ε2). (2.29)

To develop an inner expansion for the chemical potential, µ, we substitute the inner
expansion (2.28) of u into (1.8), obtaining

µ(x, t) =
(
−ε2∆x +W ′′(u)− ε2η1

) (
−ε2∆xu+W ′(u)

)
+ ε2(η1 − η2)W ′(u)

=

[
−∆z +W ′′(ũ0) + ε (~κ · ∇z +W ′′′(ũ0)ũ1)

+ ε2

(
−∆0 +W ′′′(ũ0)ũ2 +W (4)(ũ0)

ũ2
1

2
− η1

)
+ ε3

(
−∆1 +W ′′′(ũ0)ũ3 +W (4)(ũ0)ũ1ũ2 +

1

6
W (5)(ũ0)ũ3

1

)
+O(ε4)

]
·
[
(−∆zũ0 +W ′(ũ0)) + ε (−∆zũ1 + ~κ · ∇zũ0 +W ′′(ũ0)ũ1)

+ ε2

(
−∆zũ2 + ~κ · ∇zũ1 −∆0ũ0 +W ′′(ũ0)ũ2 +

1

2
W ′′′(ũ0)ũ2

1

)
+ ε3

(
−∆zũ3 + ~κ · ∇zũ2 −∆0ũ1 −∆1ũ0 +W ′′(ũ0)ũ3
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+W ′′′(ũ0)ũ1ũ2 +
1

6
W (4)(ũ0)ũ3

1

)
+O(ε4)

]
+ ε2(η1 − η2)W ′(ũ0) + ε3(η1 − η2)W ′′(ũ0)ũ1 +O(ε4). (2.30)

Thus the chemical potential admits an inner expansion of the form (2.28) where

µ̃0 =
(
−∆z +W ′′(ũ0)

)(
−∆zũ0 +W ′(ũ0)

)
, (2.31)

µ̃1 =
(
−∆z +W ′′(ũ0)

)(
−∆zũ1 + ~κ · ∇zũ0 +W ′′(ũ0)ũ1

)
+
(
~κ · ∇z +W ′′′(ũ0)ũ1

)(
−∆zũ0 +W ′(ũ0)

)
, (2.32)

µ̃2 =

(
∆z −W ′′(ũ0)

)(
∆zũ2 − ~κ · ∇zũ1 + ∆0ũ0 −W ′′(ũ0)ũ2 −

W ′′′(ũ0)ũ2
1

2

)
+

(
~κ · ∇z +W ′′′(ũ0)ũ1

)(
−∆zũ1 + ~κ · ∇zũ0 +W ′′(ũ0)ũ1

)
+

(
−∆0 +W ′′′(ũ0)ũ2 +W (4) ũ

2
1

2
− η1

)(
−∆zũ0 +W ′(ũ0)

)
+ (η1 − η2)W ′(ũ0). (2.33)

The quantity µ̃3 is relevant to the asymptotic results we develop, however we derive
its form under the simplification, ũ1 = 0, in (2.30).

A key step in the analysis is the matching conditions between the inner and outer
solutions. The outer problem is posed on a domain Ω\Γ with a co-dimension two
boundary, accordingly the proper treatment of the matching conditions requires a
careful development of the definition of the normal derivatives at the interface Γ.
Fixing x = φ(s) ∈ Γ we take two unit vectors n,m ∈ span{N1(x),N2(x)} in the
normal plane of Γ at x, and further specify that n = cos(θ)N1 + sin(θ)N2. The usual
directional derivative along n is denoted

∂n := n · ∇x = cos θ N1 · ∇x + sin θ N2 · ∇x, (2.34)

and for f ∈ C∞(Ω\Γ) we introduce the n,m limit

∂jnf
m(x) := lim

h→0+
(n · ∇x)jf(x+ hm, t) for all j ≥ 0, (2.35)

and the limit of the gradient

∇xfm(x) := lim
h→0+

∇xf(x+ hm, t), (2.36)

where the limits exist. If f ∈ C1(Ω) then the normal derivative of f will satisfy
∂nf

−m = ∂nf
m. This motivates the following definition of the jump condition:

[∂nf
n]Γ(x) := ∂nf

n(x)− ∂nf−n(x), (2.37)

which is zero when f has a smooth extension through Γ.
With this notation we examine the matching condition

(µ0 + εµ1 + ε2µ2 + . . . )(x+ εRn, t) ≈ (µ̃0 + εµ̃1 + ε2µ̃2 + . . . )(s,R, θ, t) (2.38)

as εR becomes o(1). Expanding the left-hand side about x as εR→ 0+, we have

µn
0 + ε(µn

1 +R∂nµ
n
0 ) + ε2(µn

2 +R∂nµ
n
1 +

1

2
R2∂2

nµ
n
0 ) + . . . , (2.39)
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and equating orders of ε the matching condition (2.38) yields

µn
0 = lim

R→∞
µ̃0(s,R, θ, t), (2.40)

µn
1 +R∂nµ

n
0 = µ̃1(s,R, θ, t) + o(1) as R→∞, (2.41)

µn
2 +R∂nµ

n
1 +

1

2
R2∂2

nµ
n
0 = µ̃2(s,R, θ, t) + o(1) as R→∞, (2.42)

µn
3 +R∂nµ

n
2 +

R2∂2
nµ

n
1

2
+
R3∂3

nµ
n
0

6
= µ̃3(s,R, θ, t) + o(1) as R→∞. (2.43)

Similarly we obtain the matching conditions for u,

un0 = lim
R→∞

ũ0(s,R, θ, t), (2.44)

un1 +R∂nu
n
0 = ũ1(s,R, θ, t) + o(1) as R→∞, (2.45)

un2 +R∂nu
n
1 +

1

2
R2∂2

nu
n
0 = ũ2(s,R, θ, t) + o(1) as R→∞. (2.46)

3. Fast Equilibration to the pore profile . In this section we consider the
relaxation of an initial data an equilbria solution on the fast Tj = t/εj time scales for
j = 2, 1.

3.1. Time scale T2 = t/ε2 : outer expansion. Far from the pore Γ, the
solution and chemical potential admit the outer expansion

u(x, t) = u0 + εu1 + ε2u2 + ε3u3 + . . . , (3.1)

µ(x, t) = µ0 + εµ1 + ε2µ2 + . . . , (3.2)

where

ui = ui(x, T2), µi = µi(x, T2), T2 = t/ε2. (3.3)

Substituting the expansion of u into the definition, (1.8), of µ we determine

µ0 = W ′′(u0)W ′(u0) = G′(u0), (3.4)

µ1 =
(
W ′′′(u0)W ′(u0) +W ′′(u0)2

)
u1 = G′′(u0)u1, (3.5)

where G(u) := 1
2 (W ′(u))2. Expanding the left- and right-hand sides of (1.8) yields

the expressions

∂T2
u0 = 0, ∂T2

u1 = 0, (3.6)

∂T2
u2 = ∆G′(u0). (3.7)

On the T2 time scale, the solution u is stationary to first and second order.

3.2. Time scale T2 = t/ε2: inner expansion. We assume an inner expansion
for u and µ of the form (2.28). Since (s, z) = (s(x, T2), z(x, T2)) the time derivative
of u takes the form

ut = ε−2

(
ũT2 + ũs

∂s

∂T2
+∇zũ ·

∂z

∂T2

)
.

In light of the normal velocity relations (2.20)-(2.21) we obtain

ut = −ε−3V−2 · ∇zũ0 + ε−2
(
∂ũ0

∂T2
+ ∂ũ0

∂s
∂s
∂T2

+ ∂ũ0

∂z1
z2N

2 · ∂N
1

∂T2

+∂ũ0

∂z2
z1N

1 · ∂N
2

∂T2
−V−2 · ∇zũ1

)
+O(ε−1),

(3.8)
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where V−2 denotes the normal velocity on the T2 time scale. Matching the ε−3 and
the ε−2 terms in (3.8) with the corresponding terms in the inner Laplacian expansion,
(2.29), for the chemical potential µ we find

V−2 · ∇zũ0 = 0,

∂ũ0

∂T2
+
∂ũ0

∂s

∂s

∂T2
+
∂ũ0

∂z1
z2N

2 · ∂N1

∂T2
+
∂ũ0

∂z2
z1N

1 · ∂N2

∂T2
−V−2 · ∇zũ1 = ∆zµ̃0,

where µ̃0 is given by (2.31). We are interested in solutions based upon a quasi-
stationary radial profile, consequently we assume that the transient dynamics on the
T2 have equilibrated, that is V−2 = 0 and all T2 partials are zero, so that the system of
equations reduces to ∆zµ̃0 = 0. These assumptions are consistent with equilbria which
at leading order have radially symmetric profiles that render µ̃0 = 0. Calculations for
the T1 time scale are similar, and are omitted. We deduce that

Proposition 3.1. Let U denote the nontrivial, radially-symmetric solution of

−∆zU +W ′(U) = −∂
2U

∂R2
− 1

R

∂U

∂R
− 1

R2

∂2U

∂θ2
+W ′(U) = 0 (3.9)

subject to the boundary condition U → b− := −1 exponentially as |z| → ∞. Then the
extension of U off of Γ` is an equilibrium of (1.8) on the T2 and T1 time-scales.

Remark 3.2. Equation (3.9) has many solutions, we denote the radially sym-
metric pore profile Up from (1.6) by U , dropping the subscript p to simplify notation.

A key role is played by the linearization

L := −∆z +W ′′(U), (3.10)

of (3.9) about U . This operator is self-adjoint in the R-weighted inner product, has
strictly positive essential spectrum [W ′′(b−),∞) and at least one negative eigenvalue.
Moreover the translational eigenfunctions ∂z1U and ∂z2U lie in the kernel of L. For
each m ∈ N the spaces

Zm := {f(R) cos(mθ) + g(R) sin(mθ)
∣∣ f, g ∈ C∞(0,∞)}.

are invariant under the operator L, and mutually orthogonal in L2(Ω). Moreover, on
these spaces L reduces to

L
(
f(R) cos(mθ) + g(R)(sinm)θ

)
= cos(mθ)Lmf + sin(mθ)Lmg,

where

Lm := − ∂2

∂R2
− 1

R

∂

∂R
+
m2

R2
+W ′′(U). (3.11)

Each operator Lm is self-adjoint on R+ in the R-weighted inner product, and moveover
the operator L1 is non-negative with kernel spanned by ∂RU . For m > 1 we deduce
that each of Lm > L1 is strictly positive. We address the kernel of L0 with the
following assumption.

Assumption 3.3. We assume that the operator L0 has no kernel, so that

ker(L) = span{∂z1U, ∂z2U} = span{∂RU cos θ, ∂RU sin θ}. (3.12)

In particular the operator Lm is boundedly invertible for all m 6= 1.
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We remark that any f ∈ L2(R2) admits the Fourier expansion

f = f0(R) +

∞∑
m=1

(fm(R) cos(mθ) + gm(R) sin(mθ)) ,

and so long as {f1, g1} ⊥ ker(L1), we have the inverse formulation

L−1f = L−1
0 f0 +

∞∑
m=1

((
L−1
m fm(R)

)
cos(mθ) +

(
L−1
m gm(R)

)
sin(mθ)

)
.

4. The time scale t =O(1). On the t time scale, we perform a regular expan-
sion of the outer solution u and chemical potential µ as in (3.1) and (3.2). Matching
the O(1) terms in ut and ∆µ, we obtain the nonlinear diffusion equation for u0

∂tu0 = ∆µ0, µ0 = G′(u0), (4.1)

which has stable equilibrium at the zeros of W ′, in particular u0 = b− is a stable
equilibrium.

4.1. Inner expansion. In the inner region, Γ`, we have an inner expansion,
(2.28) of u and µ. As in (3.8) we expand the time derivative of u as

ut = ũt + ũs
∂s

∂t
+
∂z

∂t
· ∇zũ = −ε−1V0 · ∇zũ0 +O(1), (4.2)

where V0 denotes the normal velocity on the t time scale. Matching (4.2) and (2.29),
the ε−2 and ε−1 terms give

0 = ∆zµ̃0, (4.3)

−V0 · ∇zũ0 = ∆zµ̃1 − ~κ · ∇zµ̃0. (4.4)

Equation (4.3) is consistent with the leading order solution u(x, t) = U(z), which
renders µ̃0 = 0. Consequently, (4.4) simplifies to

V0 · ∇zU = −∆zµ̃1. (4.5)

To determine V0 we must determine an explicit solution for µ̃1 in (4.5), subject
to matching conditions with the outer solution. Turning to polar coordinates, z1 =
R cos θ, z2 = R sin θ, we write µ̃1 in its Fourier series

µ̃1 = A(s,R) cos θ +B(s,R) sin θ + C(s,R) + ξ(s,R, θ), (4.6)

where

ξ(s,R, θ) =

∞∑
m=2

(Am(s,R) cosmθ +Bm(s,R) sinmθ). (4.7)

The Cartesian Laplacian in z transforms to the familiar polar Laplacian in R and θ,
while the left-hand side of (4.5) transforms to

V0 · ∇zU = U ′(R) (V01 cos θ + V02 sin θ) . (4.8)
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Substituting these expansions into (4.5) and matching terms yields the system

∂2A

∂R2
+

1

R

∂A

∂R
− 1

R2
A = −V01U

′(R), (4.9)

∂2B

∂R2
+

1

R

∂B

∂R
− 1

R2
B = −V02U

′(R), (4.10)

∂2C

∂R2
+

1

R

∂C

∂R
= 0, (4.11)

∂2Am
∂R2

+
1

R

∂Am
∂R

− m2

R2
Am = 0, m = 2, 3, . . . . (4.12)

∂2Bm
∂R2

+
1

R

∂Bm
∂R

− m2

R2
Bm = 0, m = 2, 3, . . . . (4.13)

Excluding singularities, the solutions to (4.12) and (4.13) take the form

Am(s,R) = am(s)Rm, Bm(s,R) = bm(s)Rm, m = 2, 3, . . . , (4.14)

while (4.11) yields C = C0(s), and (4.9) and (4.10) have solutions

A(s,R) = C01(s)R− V01(s)a(R), B(s,R) = C02R− V02(s)a(R),

where a satisfies

a′′(R) +
1

R
a′(R)− 1

R2
a(R) =

1

R2

d

dR

(
R3 d

dR

( a
R

))
= U ′(R). (4.15)

This equation has the inhomogeneous solution

a(R) =
1

R

∫ R

0

rÛ dr, (4.16)

where we have introduced Û := U − b− which is positive and tends to zero exponen-
tially as R→∞. The chemical potential µ̃1 takes the general form

µ̃1 = C0(s) + (C01(s)R− V01(s)a(R)) cos θ + (C02R− V02a(R)) sin θ

+

∞∑
m=2

(
am(s)Rm cosmθ + bm(s)Rm sinmθ

)
. (4.17)

However, simplifying the relation (2.32) between µ̃1 and ũ1, we find that

µ̃1 = L2ũ1 (4.18)

where we have introduced the linearization about U ,

L := −∆z +W ′′(U). (4.19)

In particular, µ̃1 is in the range of L, and hence perpendicular to ker(L). From
Assumption 3.3 this requires ∫

R2

µ̃1∂ziÛ dz = 0, (4.20)
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for i = 1, 2. From orthogonality in θ, the only non-trivial condition is imposed on the
sin θ and cos θ terms in µ̃1. For i = 1, 2, the condition (4.20) reduces to

0 =

∫ ∞
0

(C0iR− V0ia(R))U ′(R)RdR, (4.21)

which after integration by parts yields the relation

C0i(s) =
S2

2S1
V0i(s), (4.22)

where we have introduced

S1 :=

∫ ∞
0

Û(R)RdR > 0, and S2 :=

∫ ∞
0

Û2(R)RdR > 0. (4.23)

The normal velocity V is determined through matching conditions between the
inner and the outer expansions. From (2.41) we see that µ̃1 grows at most linearly as
R→∞ and

lim
R→∞

∂µ̃1

∂R
(s,R, θ, t) = ∂nµ

n
0 = cos θ N1 · ∇xµn

0 + sin θ N2 · ∇xµn
0 . (4.24)

Comparing these conditions with (4.17), we deduce that am = bm = 0, m ≥ 2.
Moreover, since

∂µ̃1

∂R
(s,R, π + θ, t) = −∂µ̃1

∂R
(s,R, θ, t), (4.25)

we deduce from (4.24) that the ∂nµ
n
0 satisfies the jump condition, see (2.37),

[∂nµ
n
0 ]Γ = 0, (4.26)

for any choice of normal vector n. We simplify the left-hand side of (4.24)

∂µ̃1

∂R
(s,R, θ, t) = V01

(
S2

2S1
− ∂a

∂R

)
cos θ + V02

(
S2

2S1
− ∂a

∂R

)
sin θ. (4.27)

and equating coefficients of sin θ and cos θ in (4.24) yields

Ni · ∇xµNi

0 = V0i

(
S2

2S1
− lim
R→∞

∂a

∂R

)
, (4.28)

and since a decays as R→∞ we find that

V0i =
2S1

S2
Ni · ∇xµNi

0 , (4.29)

for i = 1, 2. Combining equations (4.1), (4.26), and (4.29), yields the sharp interface
limit problem for the evolution of Γ,

∂tu0 = ∆µ0 in Ω \ Γ(t), (4.30)

n · ∇xu0 = 0 on ∂Ω, (4.31)

u0 = b− on Γ, (4.32)

[∂nµ
n
0 ]Γ = 0 on Γ, for all normal vectors n of Γ, (4.33)
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V0i =
2S1

S2
Ni · ∇xµNi

0 for all x ∈ Γ(t), i = 1, 2, (4.34)

where the chemical potential µ0 = W ′′(u0)W ′(u0). The analysis of the transient
solutions of (4.30)–(4.34) is beyond the scope of this paper, however the equilibria are
trivial.

Lemma 4.1. Assume that the co-dimension two interface Γ ⊂ (Ω) has finite one
dimensional Hausdorff measure. Then the only equilibrium solution of (4.30)-(4.34)
is the trivial solution u0(x, t) ≡ b−, however the curve Γ can have arbitrary shape.

Proof. At equilibrium we have ∆µ0 = 0 in Ω\Γ subject to n·∇xµ0 = 0 and µ0 = 0
on Γ. From classic regularity theory it follows that µ0 ∈ C2(Ω\Γ) and is bounded over
all of Ω. Since the one dimensional Hausdorff measure of Γ is finite, it has zero one
dimensional capacity and hence µ0 is harmonic on all of Ω, see [26] or the example
on page 29 of [12]. By the strong maximum principle if follows that µ0, and hence u0

are constant. Since u0 = b− on Γ, we deduce that u0 ≡ b−.
We subsequently assume the system has achieved equilibrium on the t time-scale.

5. The time scale t1 = εt: Quenched mean-curvature flow. On the slow
time-scale, t1 = εt, we use a matched inner-outer asymptotic expansion to derive
a curvature driven flow for the normal velocity of the close-loop pore structures.
However the normal velocity is quenched by the leading order outer chemical potential,
µ1 = µ1(t1) which is driven to zero at an exponential rate.

5.1. Outer expansion. On the outer scale, matching the terms in ut and ∆µ
in (1.8), we obtain

0 = ∆µ0, µ0 = W ′′(u0)W ′(u0), (5.1)

∂t1u0 = ∆µ1. (5.2)

By assumption the system (4.30)–(4.32) has reached the equilibrium u0 = b− in
Ω \ Γ(t). In this case µ0 = W ′′(b−)W ′(b−) = 0 and

µ1 =
(
W ′′′(u0)W ′(u0) +W ′′(u0)2

)
u1 = α2

−u1, (5.3)

so that (5.2) reduces to

∆u1 = 0 (5.4)

in Ω \ Γ(t).

5.2. Inner expansion. Forming an inner expansion, (2.28) for u and µ, the
time derivative of u admits the expansion

ut = ε

(
ũt1 +

∂ũ

∂s

∂s

∂t1

)
+ ε

∂z

∂t1
· ∇zũ = −V1 · ∇zũ0 +O(ε), (5.5)

where we have introduced the normal velocity V1 = (V11, V12)t, on the t1 time scale.
Matching the ε−2, ε−1 and ε0 terms in (5.5) and (2.29) yields

0 = ∆zµ̃0, (5.6)

0 = ∆zµ̃1 − ~κ · ∇zµ̃0, (5.7)

−V1 · ∇zũ0 = ∆zµ̃2 − ~κ · ∇zµ̃1 + ∆0µ̃0. (5.8)
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The matching condition (2.40) and (5.6) imply that µ̃0 = 0 and hence ũ0 = U and
(5.7) simplifies to

∆zµ̃1 = 0. (5.9)

This equation has solutions of the form

µ̃1 = C(s) +

∞∑
m=1

(
am(s)Rm cosmθ + bm(s)Rm sinmθ

)
. (5.10)

Since µ0 = 0, the matching condition (2.41) implies that am = bm = 0 for all m ≥ 1
and hence µ̃1 = µ̃1(s, t) is independent of z. Since ũ0 = U , (2.32) reduces to

µ̃1 = L(Lũ1 + ~κ · ∇zU) = L2ũ1. (5.11)

To invert L2 we introduce the following functions.
Lemma 5.1. For j = 1, 2 there exist radially symmetric functions Φj which

converge exponentially to asymptotic values α−j− as R → ∞ such that Φj − α−j− ∈
ker(L)⊥ and which solve

LΦ1 = 1, and LΦ2 = Φ1, (5.12)

Proof. Since U converges to b− at an exponential rate as R → ∞, (5.12) is
equivalent to

L(Φ1 − α−1
− ) = 1−W ′′(U)/W ′′(b−),

where the right-hand side lies in ker(L)⊥ ⊂ L2. Since the essential spectrum of L
is bounded away from the origin, the operator is Fredholm of index zero and this
problem has a unique solution which lies in ker(L)⊥. Since the right-hand side is
radial, the solution is too. A similar argument holds for Φ2.

Using Lemma 5.1 we solve (5.11) for ũ1,

ũ1 = µ̃1Φ2(R), (5.13)

and (5.8) simplifies to

∆zµ̃2 = −V1 · ∇zU. (5.14)

As in Section 4, this equation has a solution of the form

µ̃2 = C4(s) + (C11(s)R− V11a(R)) cos θ + (C12(s)R− V12a(R)) sin θ + ξ2, (5.15)

where a is defined in (4.16) and ξ2 takes the form of the final term in (4.17). On the
other hand, since ũ0 = U and ũ1 satisfies (5.13), (2.33) simplifies to

µ̃2 = L
(
Lũ2 + ~κ · ∇zũ1 −∆0U +

1

2
W ′′′(U)ũ2

1

)
+

(
~κ · ∇z +W ′′′(U)ũ1

)(
Lũ1 + ~κ · ∇zU

)
+ (η1 − η2)W ′(U), (5.16)
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which can be rewritten as

L
(
Lũ2 + µ̃1~κ · ∇zΦ2 + (z · ~κ)~κ · ∇zU +

1

2
W ′′′(U)µ̃2

1Φ2
2

)
= R2, (5.17)

where we have introduced

R2 := µ̃2 − (~κ · ∇z)2U − µ̃1(~κ · ∇zΦ1 +W ′′′(U)Φ2~κ · ∇zU)− µ̃2
1W
′′′(U)Φ1Φ2

− (η1 − η2)W ′(U).

In particular we may solve for ũ2 if and only if R2 ∈ ker(L)⊥. Addressing these two
conditions term by term we calculate that∫

R2

µ̃2
∂U

∂zi
dz = π

(
C1i

∫ ∞
0

U ′(r)r2 dr − V1i

∫ ∞
0

a(r)U ′(r)r dr

)
,

= −π (2C1iS1 − V1iS2) , (5.18)

where S1 and S2 were introduced in (4.23). The terms (κ · ∇z)2U ∈ (Z0 + Z2) and
W ′′′(U)Φ1Φ2 ∈ Z0 are orthogonal to ∂ziU ∈ Z1 while

(R2 − µ̃2, ∂ziU) = −πµ̃1κi

∫ ∞
0

U ′
(
Φ′1 +W ′′′(U)Φ2U

′)RdR. (5.19)

Lemma 5.2. The operator L satisfies

L
(

1

2
RU ′

)
=

1

2
L0(RU ′) = −∆zU = −

(
U ′′ +

1

R
U ′
)
, (5.20)

L(∆zU) = L0

(
U ′′ +

1

R
U ′
)

= −W ′′′(U)|∇U |2 = −W ′′′(U)U ′2. (5.21)

Integrating by parts on the Φ′1 term in (5.19) and using (5.20)-(5.21) we obtain

(R2 − µ̃2, ∂ziU) = −π
2
µ̃1κi

∫ ∞
0

(
Φ1L(RU ′) + Φ2L2(RU ′)

)
RdR,

= −πµ̃1κi

∫ ∞
0

R2U ′dR = 2πµ̃1κiS1. (5.22)

Combining (5.18) and (5.22) the solvability condition reduces to

C1(s) = µ̃1~κ+
S2

2S1
V1. (5.23)

The normal velocity V1 is determined through the matching condition (2.42).
Since µ0 = 0, this condition reduces to

lim
R→∞

∂µ̃2

∂R
(s,R, θ) = ∂nµ

n
1 (s, θ) = n · ∇xµn

1 , (5.24)

where n := cos θ N1 + sin θ N2. As a consequence, ξ2 = 0 in (5.15) and

lim
R→∞

((C11(s)− V11a
′(R)) cos θ + (C12(s)− V12a

′(R)) sin θ) =n · ∇xµn
1 . (5.25)

We deduce that [∂nµ
n
1 ]Γ = 0, moreover, a′(R) → 0 as R → ∞. Using (5.23) and

equating coefficients of sin θ and cos θ we obtain

V1i =
2S1

S2

(
Ni · ∇xµNi

1 − µ̃1(s)κi

)
. (5.26)
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5.3. Sharp interface limit. On the t1 time scale, the evolution of the interface,
Γ, is given by the normal velocity

Vi =
2S1

S2

(
Ni · ∇xµNi

1 − µ1κi

)
on Γ, i = 1, 2, (5.27)

where µ1 is the solution of the elliptic system

∆µ1 = 0 in Ω \ Γ, (5.28)

n · ∇xµ1 = 0 on ∂Ω, (5.29)

[∂nµ
n
1 ]Γ = 0 on Γ, for all normal vectors n of Γ. (5.30)

The inner chemical potential satisfies µ1 = µ̃1(s, t1) on Γ. However, the following
Lemma shows that the solutions, µ1 to this system are trivial.

Lemma 5.3. Suppose µ1 ∈ C2(Ω \ Γ) ∩ C(Ω̄) satisfies (5.28) and (5.29) and Γ
has finite one dimensional Hausdorff measure, then µ1 is a spatial constant.

Proof. By the arguments of Lemma 4.1 we deduce that ∆µ1 = 0 on all of Ω. The
result then follows from the strong maximum principle.

It remains to determine the spatially constant value µ1 = µ1(t1), which is deter-
mined by mass conservation. Since ∇xµ1 = 0 the normal velocity reduces to

V = −2S1

S2
µ1~κ. (5.31)

Denoting the total mass of the minority phase by M0, we decompose it as

M0 =

∫
Ω\Γ`

(u− b−) dx+

∫
Γ`

(u− b−)dx. (5.32)

Solving (5.3) for µ1 the outer integral becomes∫
Ω\Γ`

(u− b−) dx =

∫
Ω\Γ`

εα−2
− µ1 dx+O(ε2), (5.33)

= εα−2
− µ1(|Ω| − |Γ`|) +O(ε2),

while absorbing the |Γ`| term in (5.33) into the inner integral, changing variables, and
recalling (2.22) yields∫

Γ`

(ũ− b−)− εα−2
− µ1 dx =

∫
Γ

∫
R2

(
(ũ− b−)− εα−2

− µ1

)
J(s, z) ds dz.

=

∫
Γ

∫
R2

(
Û + ε(ũ1 − µ1α

−2
− )
)

(ε2 − ε3z · ~κ) dz ds

= 2π|Γ|
(
S1ε

2 + µ1S3ε
3
)

+O(ε4|Γ|), (5.34)

where Û is orthogonal to z and we introduced

S3 :=

∫ ∞
0

(Φ2 − α−2
− ) RdR > 0. (5.35)

Combining (5.34) and (5.33), we have

M0 = α−2
− µ1|Ω|ε+ 2πS1|Γ|ε2 + 2πµ1|Γ|S3ε

3 +O(ε4|Γ|). (5.36)

We consider this balance under various configurations.
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5.3.1. |Γ| is O(ε−1). We expand the length of Γ as

|Γ| = ε−1γ−1 + γ0 + εγ1 +O(ε2), (5.37)

and writing M0 = εM̃0 + ε2M̃1 +O(ε2), (5.36) yields

M̃0 = α−2
− |Ω|µ1 + 2πS1γ−1. (5.38)

Taking the t1 derivative of this expression we determine that

d|Γ|
dt1

= ε−1 dγ−1

dt1
+O(1) = −ε−1 |Ω|

2πα2
−S1

dµ1

dt1
+O(1). (5.39)

On the other hand,

d|Γ|
dt1

= −
∫

Γ

V · ~κ ds =
2S1

S2
µ1

∫
Γ

|~κ|2 ds. (5.40)

Equating the two expressions yields the leading order evolution equation

dµ1

dt1
= −ε

4πα2
−S

2
1

|Ω|S2
µ1

∫
Γ

|~κ|2 ds. (5.41)

From (4.23), S1, S2 > 0, and µ1 decays exponentially to 0 on the t1 time scale,
while the normal velocity is driven by either a mean curvature flow for µ1 < 0, or a
backwards mean curvature flow for µ1 > 0.

5.3.2. |Γ| is O(1). Since the total mass M0 of the minority species is conserved,
we see that µ′1(t1) = O(ε), and µ1 is constant on this time-scale. If moreover, M0 =
O(ε2), then µ1 = 0 to leading order.

6. Length-Preserving Willmore flow on the slow time scale. Assuming a
relaxation to equilibrium on the t1 time-scale, we find that well-separated collections
of closed-loop pores evolve according to a length-preserving Willmoresque flow on the
t2 = ε2t time-scale.

6.1. Outer expansion. On the slow time scale, t2 = ε2t, from the result of
Section 5, the outer expansion takes the from

u = u0 + ε2u2 + ε3u3 + . . . , (6.1)

µ = ε2µ2 + ε3µ3 + . . . . (6.2)

Since u0 = b−, we see that ∂tu = O(ε4) and matching the terms in (1.8) we find

∆µ2 = 0. (6.3)

6.2. Inner expansion. Similarly, the inner expansion reduces to

u(x, t) = ũ(s, z, t) = ũ0 + ε2ũ2 + ε3ũ3 + . . . , (6.4)

µ(x, t) = µ̃(s, z, t) = ε2µ̃2 + ε3µ̃3 + . . . , (6.5)

where ũ0 = U and the time derivative takes the form

ut = ε2

(
ũt2 +

∂ũ

∂s

∂s

∂t2

)
+ ε2 ∂z

∂t2
· ∇zũ = −εV2 · ∇zũ0 +O(ε2). (6.6)

20



where V2 = (V21, V22)t is the normal velocity on the t2 time scale. Matching terms
in (6.6) and (2.29), we arrive at

0 = ∆zµ̃2, (6.7)

−V2 · ∇zU = ∆zµ̃3 − ~κ · ∇zµ̃2. (6.8)

As at the previous time scales, matching conditions imply that µ̃2 = µ̃2(s) is constant
in R and θ, depending only upon position along the curve Γ. Moreover the relation
(2.33) reduces to

µ̃2 = L2ũ2 − (~κ · ∇z)2U + (η1 − η2)∆zU. (6.9)

We solve this equation via the following Lemma.
Lemma 6.1. For i, j = 1, 2, there exist unique Φij ∈ (Z0 + Z2) ⊥ ker(L) such

that

L2Φij =
∂2U

∂zi∂zj
. (6.10)

Moreover these functions take the from

Φ11 = Φ3(R) + Φ4(R) cos 2θ,

Φ12 = Φ21 = Φ4(R) sin 2θ, (6.11)

Φ22 = Φ3(R)− Φ4(R) cos 2θ,

where Φ3 and Φ4 depend only upon R.

Proof. The existence follows from Assumption 3.3 since ∂2U
∂zizj

⊥ ker(L) for i, j =

1, 2. To derive the functional form (6.11) we calculate that

Uz1z1 =
1

2

(
U ′′ +

1

R
U ′
)

+
1

2

(
U ′′ − 1

R
U ′
)

cos 2θ,

= −1

4
(L0 + cos 2θL2) (RU ′) (6.12)

Uz1z2 =
1

2

(
U ′′ − 1

R
U ′
)

sin 2θ = −1

4
sin 2θL2(RU ′), (6.13)

Uz2z2 =
1

2

(
U ′′ +

1

R
U ′
)
− 1

2

(
U ′′ − 1

R
U ′
)

cos 2θ,

= −1

4
(L0 − cos 2θL2) (RU ′). (6.14)

By Assumption 3.3 the operators Lm are boundedly invertible for m 6= 1. From (5.20)
it follows that (6.11) holds with

Φ3 :=
1

2
L−2

0

(
U ′′ +

1

R
U ′
)

= −1

4
L−1

0 (RU ′), (6.15)

Φ4 :=
1

2
L−2

2

(
U ′′ − 1

R
U ′
)

= −1

4
L−1

2 (RU ′). (6.16)

Using Lemmas 5.1 and 6.1 we solve (6.9) for ũ2 in the form

ũ2 = µ̃2Φ2 +
∑
i,j

κiκjΦij − (η1 − η2)(Φ11 + Φ22), (6.17)
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= µ̃2Φ2 +
(
|~κ|2 − 2(η1 − η2)

)
Φ3 +

(
(κ2

1 − κ2
2) cos 2θ + 2κ1κ2 sin 2θ

)
Φ4.

Since µ̃2 is independent of z, (6.8) simplifies to

∆zµ̃3 = −V2 · ∇zU (6.18)

As in Sections 4 and 5, the matching conditions yield a solution of the form

µ̃3 = C3(s) + (C21(s)R− V21a(R)) cos θ + (C22(s)R− V22a(R)) sin θ, (6.19)

where the functions C3 and C2 := (C21, C22)t are to be determined. Returning to
(2.30), using ũ0 = U and ũ1 = 0, and recalling the definition (2.26) of ∆0, we derive
the expression

R3 = L
(
Lũ3 + ~κ · ∇zũ2 −∆1ũ0

)
, (6.20)

where he have introduced

R3 := µ̃3 − ~κ · ∇z
(
Lũ2 + (z · ~κ)~κ · ∇zU

)
−
(

(z · ~κ)~κ · ∇z +W ′′′(U)ũ2 − (∂2
s + η1)

)
(~κ · ∇zU). (6.21)

We may solve for ũ3 if and only if R3 ∈ ker(L)⊥. We address each term in this
solvability condition in turn. As in (5.18) we have∫

R2

µ̃3Uzi dz = −π(2C2iS1 − V2iS2) (6.22)

Using (6.12)-(6.14) and (6.17) on the Lũ2 term yields

(~κ · ∇z(Lũ2), Uz1)L2 = − (Lũ2, κ1Uz1z1 + κ2Uz1z2)L2 ,

=
1

4
(Lũ2, κ1L0(RU ′) + (κ1 cos 2θ + κ2 sin 2θ)L2(RU ′))L2 ,

=
1

4

(
µ̃2 + (

1

2
|~κ|2 − η1 + η2)

1

R
(RU ′)′, κ1RU

′
)
L2

+
1

8

(
(κ2

1 − κ2
2)κ1 cos2 2θ + 2κ2

1κ2 sin2 2θ)(U ′′ − 1

R
U ′), RU ′

)
L2

.

Switching to polar coordinates and carrying out the θ integration we obtain

(~κ · ∇z(Lũ2), Uzi)L2 =
π

2

∫ ∞
0

κiµ̃2R
2U ′ + (

1

2
|~κ|2 − η1 + η2)κi(RU

′)′RU ′ dR

+
π

8
|~κ|2κi

∫ ∞
0

(U ′′ − 1

R
U ′)R2U ′ dR,

= −π
(
µ̃2S1 +

|~κ|2

4
S4

)
κi, (6.23)

for i = 1, 2, where we have introduced

S4 :=

∫ ∞
0

(U ′)2RdR > 0. (6.24)
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For the other ũ2 term, using (5.20) and (5.21) we find

(W ′′′(U)ũ2~κ · ∇zU,Uz1)L2 =
1

2

∫
R2

ũ2(κ1 cos2 θ + κ2 cos θ sin θ)L2
0(RU ′) dz.

Substituting (6.17) for ũ2, the θ-integrals are zero, except for the product of the cos2 θ
term and the θ-independent terms of ũ2. For i = 1, 2 these terms yield

(W ′′′(U)ũ2~κ · ∇zU,Uzi)L2 =
π

2
κi

∫ ∞
0

(µ̃2Φ2 + (|~κ|2 − 2η1 + 2η2)Φ3)L2
0(RU ′)RdR

=
π

2
κi

∫ ∞
0

(
µ̃2 + (

1

2
|~κ|2 − η1 + η2)

1

R
(RU ′)′

)
(RU ′)RdR

= −πS1µ̃2κi. (6.25)

There are two terms involving only curvature-gradients of U , the first satisfies

(~κ · ∇z((z · ~κ)~κ · ∇zU), Uzi)2 = − ((z · ~κ)~κ · ∇zU, (~κ · ∇zU)zi)2 ,

=
1

2
κi

∫
R2

|~κ · ∇zU |2 dz =
π

2
κi|~κ|2

∫ ∞
0

(U ′)2RdR =
π

2
S4κi|~κ|2. (6.26)

Integrating by parts on the second term of this type yields

((z · ~κ)~κ · ∇z(~κ · ∇zU), Uzi)L2 = −
(
~κ · ∇zU, |~κ|2Uzi + (z · ~κ)(~κ · ∇zU)zi

)
L2 ,

where the second term on the right-hand side is evaluate as above. Expanding the
first term on the right-hand side we obtain

((z · ~κ)~κ · ∇z(~κ · ∇zU), Uzi)L2 = −π
2
S4κi|~κ|2. (6.27)

For i = 1, 2, the surface diffusion terms in the solvability condition evaluate to(
(∂2
s + η1)~κ · ∇zU,Uzi

)
L2 = πS4(∂2

s + η1)κi. (6.28)

Combining (6.22)-(6.23) with (6.25)-(6.27), the solvability condition reduces to

2S1C2 − S2V = S4

(
∂2
s + η1 +

2S1

S4
µ̃2 +

1

4
|~κ|2
)
~κ (6.29)

where S1 and S2 are as defined in (4.23) and (6.24) respectively. Since µ0 = µ1 = 0,
the matching condition (2.43) reduces to

lim
R→∞

∂µ̃3

∂R
(s,R, θ) = ∂nµ

n
2 (6.30)

for n = cos θ N1(s) + sin θ N2. As in Sections 4 and 5, we deduce that

[∂nµ
n
2 ]Γ = 0, (6.31)

C2i(s) = Ni · ∇xµNi

2 , (6.32)

for i = 1, 2, and solving (6.29) for the normal velocity yields

V2i =
2S1

S2
Ni · ∇xµNi

2 −
S4

S2

(
∂2
s + η1 +

2S1

S4
µ̃2 +

3

4
|~κ|2
)
κi. (6.33)

23



6.3. Sharp interface limit. Since the outer chemical potential solves ∆µ2 = 0
on Ω\Γ(t) subject to homogeneous Neumann conditions on ∂Ω and [∂nµ

n
2 ]Γ = 0,

it follows from Lemma 5.3 that µ2 = µ2(t2) is a spatial constant. Consequently
∇xµ2 = 0 and the normal velocity reduces to

V2 = −S4

S2

(
∂2
s + η1 +

2S1

S4
µ2 +

1

4
|~κ|2
)
~κ. (6.34)

As in Section 5, the value of the chemical potential, µ2, is determined through the
conservation of the minority phase. Since u0 = b− and u1 = 0 in Ω \ Γ`, the outer
chemical potential satisfies

µ2 = W ′′(u0)2u2 = α2
−u2, (6.35)

and hence u2 = u2(t2) is a spatial constant. The mass of the minority phase satisfies

M0 =

∫
Ω\Γ`

(u− b−) dx+

∫
Γ`

(ũ− b−) dx,

=

∫
Ω

(u− b−) dx+

∫
Γ`

ũ− b− − ε2α−2
− µ2 dx. (6.36)

As in (5.34) we have∫
Ω

(u− b−) dx =

∫
Ω

(ε2u2 +O(ε3)) dx = ε2α−2
− |Ω|µ2 +O(ε3). (6.37)

For the inner integral, recalling (2.22) we have∫
Γ`

(ũ− b−)− ε2α−2
− µ2 dx =

∫
Γ

∫
R2

(
(ũ− b−)− ε2α−2

− µ2

)
J(z, s) dz ds

=

∫
Γ

∫
R2

(
Û + ε2(ũ2 − α−2

− µ2)
)
(ε2 − ε3z · ~κ) dz ds+O(ε5|Γ|)

= ε22πS1|Γ|+ ε42π|Γ|(S3µ2 + S5|κ|2) +O(ε5|Γ|), (6.38)

where the O(ε3) term is zero by parity, we used (6.17) to eliminate ũ2, and introduced

S5 :=

∫ ∞
0

Φ3(R)RdR, (6.39)

where Φ3 is defined in (6.11), and has indefinite sign. Combining (6.37) and (6.38),
the mass of the minority phase is expressed as

M0 = ε2
(
α−2
− |Ω|µ2 + 2πS1|Γ|

)
+ ε4|Γ|2πS5µ2 +O(ε5|Γ|). (6.40)

6.3.1. Case I: |Γ0| is of order O
(
ε−1
)

. In this case M0 = O(ε), and expanding
|Γ| and M0 as

|Γ| = ε−1γ−1 + γ0 + εγ1 +O(ε2), M0 = εM̃0 + ε2M̃1 +O(ε3), (6.41)

the mass balance (6.40) requires

M̃0 = 2πS1γ−1, M̃1 = 2πS1γ0 + α−2
− |Ω|µ2. (6.42)
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Since the mass M0 is conserved, we deduce that γ−1 = M̃0/(2πS1) is independent of
time and hence ∂t2 |Γ| = O(ε).

By assumption, ‖~κ‖L∞(Γ) = O(1) and from (6.34) we deduce that the normal
velocity ‖V2‖L∞(Γ) = O(1). Moreover, from (2.12) we have

d|Γ|
dt2

= −
∫

Γ

~κ ·V2 ds = O(ε), (6.43)

and from (6.34), µ2(t2) must satisfy

µ2 =
S4

2S1

∫
Γ
|∂s~κ|2 − η1|~κ|2 − 1

4 |~κ|
5 ds∫

Γ
|~κ|2 ds

. (6.44)

This choice of µ2 serves to preserve the length of Γ. Introducing the curvature-
weighted projection associated to Γ, which acts on F = (f1, f2)t ∈ L2(Γ) as

ΠΓ[F] := F− ~κ
∫

Γ
F · ~κ ds∫

Γ
|~κ|2 ds

,

then the normal velocity has the equivalent formulation

V2 = −S4

S2
ΠΓ

[(
∂2
s +

1

4
|~κ|2
)
~κ

]
. (6.45)

where the constant η1 drops out since ΠΓ[η1~κ] = 0.

6.3.2. Case II: |Γ| is of order O(1). In this case we expand M0 = ε2M̃1+O(ε3)
and |Γ| = γ0 + εγ1 +O(ε2). The balance of terms in (6.40) yields

M̃1 = 2πS1γ0 + α−2
− |Ω|µ2. (6.46)

In particular, γ0 =
(
M̃1 − α−2

− |Ω|µ2

)
/(2πS1) and

d|Γ|
dt2

= −|Ω|µ
′
2(t2)

2πS1α2
−

+O(ε). (6.47)

From (6.34), the leading order terms yield the coupled system

µ′2(t2) = 2πS1α
2
−|Ω|−1

∫
Γ

V · ~κ ds, (6.48)

V = −S4

S2

(
∂2
s + η1 +

2S1

S4
µ2 +

1

4
|~κ|2
)
~κ. (6.49)

7. Competitive Geometric Flows. In an amphiphilic system it is possible
for bilayers and pore structures to co-exist on the slow time-scale, and compete with
one-another for the surfactant phase. Indeed, consider the pore profile, U = Up,
constructed in (3.9) and the bilayer profile, Ub, which is the homoclinic solution of

∂2
rUb = W ′(Ub), (7.1)

subject to the condition Ub → b− as r → ±∞. We have shown that for any closed
co-dimension two manifold, Γp ⊂ Ω ⊂ R3, we may associate a pore solution of the
form

u(x, t) = Up(z1, z2) + ε2u2p(x, t) +O(ε3), (7.2)
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where u2p(x, t) → µ2α
−2
− at an O(1) exponential rate in the ε−scaled distance,

|(z1, z2)|, to Γp. Here µ2 = µ2(t2) is the spatially constant, time dependent value
of the outer chemical potential. Similarly, in [8] we showed that for any co-dimension
one hyper-surface, Γb ⊂ Ω ⊂ R3, we may associate a bilayer solution of the form

u(x, t) = Ub(r) + ε2u2b(x, t) +O(ε3), (7.3)

where Ub is the homoclinic solution of (7.1) and u2b(x, t) → µ2α
−2
− at an O(1) ex-

ponential rate in the ε−scaled signed distance, r, to Γb. It is trivial to extend this
construction to co-existing bilayer and pore structures, with a common value of the
outer chemical potential µ2, so long as the sub-manifolds are uniformly smooth and
are an O(1) distance from both self-intersection and intersection with each-other.
Indeed the composite solution takes the form

u(x, t) = Up(z1, z2) + Ub(r) + ε2

(
u2p(x, t) + u2b(x, t)−

µ2

α2
−

)
+O(ε3), (7.4)

where the two morphologies, characterized by the disjoint co-dimension one and two
manifolds Γb and Γp, compete with each-other for surfactant phase through the com-
mon, temporally varying, value of µ2 = µ2(t2).

The normal velocity of the bilayer and pore morphologies are given by (1.9) and
(1.11), coupled through the outer chemical potential µ2. The evolution of the outer
chemical potential is determined by the mass constraint for the combined bilayer-pore
structures. For u a combined bilayer-pore solution of the form (7.4), conservation of
mass implies that

M :=

∫
Ω

(u0 − b−) dx =

∫
Ω

(u(x, t)− b−) dx

=

∫
Γb,`

Ûb(r(x)) dx+

∫
Γp,`

Ûp(z(x)) dx+O
(
ε2|Γp|, ε2|Γb|)

)
, (7.5)

where Γb,` and Γp,` are the regions of Ω whose points are within ε` of Γb and Γp
respectively. A small total mass M = εM0 + O(ε2), requires that |Γb| = O(1) and
|Γp| = O(ε−1). Changing to local variables in the mass constraint integrals yields the
leading-order identity

mb|Γb|+mpε|Γp| = M0, (7.6)

where mb and mp are introduced in (1.10) and Theorem 1.1. Equivalently, taking the
time derivative we have

mb
d

dt
|Γb|+mpε

d

dt
|Γp| = 0. (7.7)

From (2.12), and the bilayer equivalent

d|Γb|
dt

=

∫
Γb

VbH dS,

the normal velocity expressions (1.9) and (1.11) yield leading-order expressions for
change in bilayer surface area and pore length,

d|Γb|
dt

=
σb
mb

∫
Γb

[(
K − H2

2
+
η1 + η2

2
+ λbµ2

)
H2 − |∇sH|2

]
dS, (7.8)
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Figure 4: Bottom half of a spherical bilayer of radius R and an arc-length of a closed circular pore of radius
r > 0. The structures are cut to show the inner width, which is O(ε). The surfactant phase is colored blue,
while the surface is yellow.

d|Γp|
dt

=
σp
mp

∫
Γp

[(
1

4
|~κ|2 + η1 + λpµ2

)
|~κ|2 − |∂s~κ|2

]
ds. (7.9)

Since only an O(ε2) quantity of surfactant is contained in the outer region, away from
the pores and bilayers, the total mass contained in the bilayer and pores is effectively
conserved, and any increase in bilayer surface area will result in a decrease of net
pore length, and vice versa. Moreover the overall evolution is sensitive not only to
the particular geometric configuration, that is the curvatures of Γp and Γb, but also
the well-shape, through λb and λp, and the parameter η1. The mass constraint (7.7)
determines the evolution of µ2(t2) through the relations (7.8), and (7.9); which yield
a closed, coupled system for the curvature driven flows (1.9) and (1.11). While the
overall system is nontrivial to resolve in a general framework, the interaction laws of
geometrically simple structures can be explicitly determined.

7.1. Competition among spherical bilayers and circular pores. We derive
the interaction between spatially well-separated collections of spherically symmetric
bilayers, and closed, circular pores. Indeed, at time t we suppose there are Nb(t) ∈ N+

spherical bilayer structures with radii Ri(t) for i = 1, . . . , Nb(t), and Np(t) ∈ N+

closed, circular pores of radii ri(t) for i = 1, . . . , Np, see Figure 7. To be consistent
with a total surfactant phase which is O(ε), we assume that each radii is O(1), and
Nb = O(1) while Np = O(ε−1). Since the curvatures of the bilayers and pores are
independent of position along these interfaces, the surface derivative terms in (7.8)
and (7.9) are zero. In addition, in (7.8) the higher-order curvature term K − 1

2H
2

is zero for a sphere in R3. Since the ith spherical bilayer has center-line surface area
4πR2

i , while the ith closed pore has center-line length 2πri, we may apply (7.8) and
(7.9) individually to each distinct structure, rewriting the equations as a coupled
system of ordinary differential equations for the evolution of the radii,

Ṙi =
2σb
mb

(
η1 + η2

2
+ λbµ2

)
1

Ri
, i = 1, . . . , Nb, (7.10)

ṙj =
σp
mp

(
1

4r2
j

+ η1 + λpµ2

)
1

rj
, j = 1, . . . , Np. (7.11)

The coupling is through the common, background value, µ2 = µ2(t2), of the chemical
potential. Its value is determined through the conservation of mass relation, (7.7),
which balances the volumes of surfactant phase in each family of structures. Simpli-
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fying this relation, we determine

µ2(~r) = −

(
4Nbσb + εσp

Np∑
j=1

r−1
j

)
η1 + 4Nbσbη2 + 1

4εσp
Np∑
j=1

r−3
j

8Nbσbλb + εσpλp
Np∑
j=1

r−1
j

. (7.12)

The mean field µ2 depends upon the particular values of the circular pore radii,
~r := (r1, · · · , rNp)t however it is independent of the bilayer radii, ~R := (R1, · · · , RNb)t,
depending only upon their total number, Nb. So long as Nb is constant the system is
upper-triangular, with the pore evolution forming a closed system, while the bilayer
evolution depends upon the evolution of the pores.

The equilibria form an over-constrained system, with Np + 1 equations for the
Np pore radii, ~r. From the form of (7.11) and (7.12), the pore radii take a common
equilibria value

req :=

√
λb

2 ((λp − 2λb)η1 + λpη2)
, (7.13)

and evaluating the chemical potential at ~req := (req, · · · , req)T one obtains

µ2(~req) = −η1 + η2

2λb
, (7.14)

which is precisely the equilibrium value for the bilayer radii. Thus, so long as the bifur-
cation parameter ν, defined in (1.13) is positive, then there exist equilibria consisting
of Np circular pores with common radius req coexisting with Nb spherical bilayers of

arbitrary radii, ~R ∈ RNb+ .
While the full dynamics of (7.10)-(7.12) are non-trivial, several important prop-

erties of the system can be readily extracted. In particular, µ2 < 0, and the spherical
bilayers either all grow, if µ2 > −(η1+η2)/(2λb), or all shrink, if µ2 < −(η1+η2)/(2λb).
Moreover, when ν < 0, not only do the circular pores and spherical bilayers fail to
coexist, but the spherical pores must shrink until they reach an O(ε) radius. Indeed,
substituting (7.12) into (7.10) and simplifying we obtain the form

Ṙi =
1

Ri

εσbσp
mb

ν
Np∑
j=1

r−1
j − 1

2λb
Np∑
j=1

r−3
j

8Nbσbλb + εσpλp
Np∑
j=1

r−1
j

, (7.15)

which confirms that Ṙi < 0 when ν < 0. Since the radii ~r of the circular pores
are bounded above by mass constraints, the spherical bilayers must shrink with a
uniform rate, reaching an O(ε) radius in an O(1) time on the t2 time-scale. At this
point the interface underlying the spherical bilayer is not far from self-intersection
and the analysis leading to (7.10) is no-longer valid. We conjecture that such a
sufficiently small spherical bilayer will extinguish, at which instant Nb decreases by
one. Although it is also plausible that a small radius bilayer may form break up into
a family of micelles or form a closed-loop pore or other solution of (1.2).

On the other hand, for ν > 0, the equilibrium configurations composed of Nb
spherical bilayers coexisting with Np circular pores of common radius req, form an
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asymptotically stable family. Indeed, since Ṙi is small near the equilibria we may
assume that Nb is constant; the nonlinear asymptotic stability of the family then
follows from the linear stability of ~r = ~rc within the closed evolution for the circular
pore radii. We write this system in the form

d~r

dt
= F (~r ;Nb), (7.16)

where F depends upon µ2 = µ2(~r ;Nb). We must determine the eigenvalues of the
Np × Np matrix ∇~rF (~rc). We introduce the quantity µ̃2(r) := µ2(r, · · · , r), which
satisfies

µ̃2 = −
4σbNb(η1 + η2) + εσpNp(η1r

−1 + 1
4r
−3)

8σbNbλb + εσpNpλpr−1
. (7.17)

Taking the gradient of (7.11) and using the relation (7.14), we calculate that

∇~rF (~req) =
σp
mp

(
− 1

2r4
eq

I +
λpµ̃

′
2(req)

req
O

)
,

where O denotes the Np ×Np matrix all of whose entries are one and I denotes the
Np ×Np identity matrix.

The matrix ∇~rF (~rc) has an Np − 1 dimensional eigenspace, given by ker(O), as-
sociated to the eigenvalue λ0 = −σp/(2mpr

4
eq) < 0. This eigenvalue and eigenspace

establish the stability to perturbations which break the equality of the circular pore
radii. The remaining eigenspace is spanned by the vector (1, · · · , 1)t and has eigen-
value

λ1 =
σp
mp

(
− 1

2r4
c

+
Npλpµ̃

′
2(req)

req

)
,

= − σp
mpr4

eq

(
1

2
+

εσpN
2
pλ

2
p

4(8σbNbλb + εσpNpλpr
−1
eq )

)
.

Since λ1 < 0 this establishes the linear, and hence nonlinear asymptotic stability of
the mixed equilibria, and confirms the final statement of Theorem 1.1.

Remark 7.1. In the absence of bilayers, when Nb = 0, then η1 and η2 drop out
of the pore evolution equation, which reduces to

ṙj =
πσp
2mp

(
1

r2
j

−
∑Np
j=1 r

−3
j∑Np

j=1 r
−1
j

)
. (7.18)

Any common value of the circular pore radii, ~r = (r, · · · , r)t, is a stable equilibria.
However adding a single spherical bilayer, in the ν > 0 regime, will drive the pores to
their equilibrium radius, req, assuming the bilayer persists.
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