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Abstract. We present a novel class of higher order energies motivated by the
study of network formation in binary mixtures of functionalized polymers and

solvent. For a broad class of Lagrangians, we introduce their functionalized
form, which is a higher order energy balancing the square of the variational

derivative against the original energy. We show that the functionalized ener-

gies have global minimizers over several natural spaces of admissible functions.
The critical points of the functionalized Lagrangian contain those of the orig-

inal Lagrangian, however we demonstrate that for a sufficient strength of the

functionalization all the critical points of the original Lagrangian are saddle
points of the functionalized Lagrangian, and the global minima is a new struc-

ture.

1. Introduction. A goal of polymer chemistry is to design materials with novel
macroscopic properties by controlling the spontaneous generation of nanoscaled,
phase separated networks. A primary mechanism to generate such networks is
through the “functionalization” of hydrophobic polymer chains and nanoparticles by
the addition of acid or alkaline tipped side-chains. In the presence of a polar solvent
the end groups interact exothermically, driving the generation of polymer-solvent
or nanoparticle-solvent interface. The resulting phase-separated network structures
can be exploited for charge selective conduction, and have important applications
to efficient energy conversion devices such as polymer electrolyte membranes for
fuel cells, [14, 16], dye sensitized solar cells [10], and bulk-heterojunction solar cells,
[13, 3].

In 1958 Cahn and Hilliard, [1], introduced their classical energy

E(u) =
∫
Ω

1
2
|∇u|2 +W (u) dx, (1)

which describes binary mixtures of inert materials in terms of a scalar quantity u
representing the volume fraction over a domain Ω ⊂ Rd, d ≥ 2. The potential
W typically has two local minima, and satisfies growth conditions as u → ±∞.
Constrained minimizers of E are well understood, and under an appropriate spatial
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scaling, the Γ-convergence of E to a scaled surface area functional has long been
established [12, 18].

While mixtures of inert materials generically seek to minimize surface area, the
embedded charge groups in functionalized materials interact exothermically with
polar solvents, spontaneously generating polymer-solvent interface. A prime exam-
ple is Nafion, a functionalized fluorocarbon polymer frequently used as a membrane
separator in polymer electrolyte membrane fuel cells. From their small angle x-ray
scattering (SAXS) experiments, [9], Hsu and Gierke hypothesized that the water
domain within the Nafion forms small 4-5 nanometer balls interconnected by thin
1-2 nanometer cylindrical pores. They further suggested such a network could arise
from a balance between the elastic energy of the interface and the hydrophilic sur-
face interactions among the charged functional groups and the solvent. Motivated
by these observations, a model has been proposed, [14, 6], for interfacial devel-
opment in functionalized polymer-solvent mixtures which assigns a negative value
to interfacial energy via the Cahn-Hilliard energy and balances this against the
square of its own variational derivative. More generally, we introduce the quadratic
functionalization, F , of the energy E with respect to the balance parameter η > 0,

F(u) =
∫
Ω

1
2

(
δE
δu

(u)
)2

dx− η E(u). (2)

and in particular the Functionalized Cahn-Hilliard (FCH) energy takes the form

FCH(u) =
∫
Ω

1
2

(
∆u−W ′(u)

)2

− η
(

1
2
|∇u|2 +W (u)

)
dx. (3)

In the sequel we establish two broad theorems which show that functionalized en-
ergies of the form (2) sit inside an appealing mathematical framework. In Theorem
1 we show that a broad class of energies E have quadratic functionalizations which
possess absolute minimizers over a variety of natural admissible function spaces. In
Theorem 2 we show that the critical points of the the original energies are critical
points of the functionalized energies, however if the strength of the functionalization,
as measured by η, is large enough, then these inherited critical points are saddles,
and the global minimizer is a novel structure. Thus the functionalized energies
have a rich family of critical points. Indeed, in [6] the novel global minimizers of
the one-dimensional problem, bifurcating from the classical minimizers, are used to
parameterize the bi-layer network structures which dominate the energy landscape
in Rn, for n > 1.

The FCH energy is has appeared before in the literature. In [7], an energy was
proposed for amphiphilic systems, in which two immiscible fluids are mixed with a
surfactant forming a microemulsion at the interface. This energy was motivated by
small-angle X-ray scattering (SAXS) data which can be related to the reciprocal of
the Fourier transform of the second variation of the energy evaluated at a constant
background state. Based upon the data, the authors proposed an energy with a
discontinuous dependence on the mixture fraction u. In subsequent work, [17], the
authors smoothed out the coefficients, obtaining a form equivalent to the FCH.

Although not addressed here, Γ−limit of the FCH energy raises intriguing issues.
The case η < 0, when both terms in (3) are positive, is the perview of conjecture
of De Giorgi, which posits the Γ-convergence of a scaled version (3) to a modified
Willmore energy. This result has recently been established, [11, 15], as well as a
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related problem concerning the minimization of the FCH with η = 0 subject to
a surface area constraint, [4]. However the formal results of [6] suggest that the
nature of the FCH energy is fundamentally different in the case η > 0. Indeed,
for a fixed, smooth hypersurface Γ ⊂ Rn, the authors showed a convergence to a
Canham-Helfrich energy, [2, 8], written in terms of the mean curvature H as

ECH(Γ) =
∫
Γ

a1 + a2(H − a3)2 dS, (4)

with a negative interfacial coefficient a1 < 0 and a positive curvature coefficient
a2 > 0. Most significantly, due to its higher-order nature, the FCH energy supports
a variety of interfacial structures, with the resulting values of the limiting coeffi-
cients depending upon the nature of the interfacial structure chosen. Moreover,
preliminary results suggest that for non-zero volume fractions of both phases, the
minimizing hypersurfaces of the FCH will have unbounded length, and the limit of
zero-interfacial width will more resemble a homogenization problem than a tradi-
tional Γ−convergence one.

2. Notation. We consider functions A : Rn × Rn 7→ R with values A(p, x) and
denote the full k-contraction of the k-order derivative with respect to p by

Dk
pA(p)(~h1, . . . ,~hk) =

n∑
i1=1

· · ·
n∑

ik=1

∂kA

∂pi1 . . . ∂pik
(p)~h1,i1 · · ·~hk,ik , (5)

where ~hj ∈ Rn for j = 1, . . . , n. The l contraction of the k tensor Dk
pA by vectors

(~h1, . . . ,~hl) is a k − l tensor with entries[
Dk

pA(p)(~h1, . . .~hl)
]

(j1,...,jk−l)
= Dk

pA(p)(~h1, . . . ,~hl, ~ej1 , . . . , ~ejk−l
), (6)

where {~e1, . . . , ~en} is the canonical basis of Rn. In particular for k = 2 we employ
the notation

D2
pA(p)(~h1,~h2) = ~ht2D

2
pA(p)~h1 = ~h2 ·D2

pA(p)~h1 = ~h1 ·D2
pA(p)~h2. (7)

We also use the matrix inner product for M,N ∈ Rn×n,

M : N =
n∑

i,j=1

Mi,jNi,j . (8)

The set Ω ⊂ Rn will be bounded with a C2 boundary. For f ∈ L1(Ω) we denote the
mass of f by

< f >=
∫
Ω

fdx, (9)

while the L2 pairing of f, g ∈ L2(Ω) is denoted

〈f, g〉 =
∫
Ω

f(x)g(x) dx. (10)
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3. Functionalization. Fix a bounded domain Ω ⊂ Rn and consider a Langrangian
L(p, z, x) : Rn × R × Ω → R, which is smooth in its arguments. The associated
energy E maps an admissible set A into R according to

E(u) =
∫
Ω

L(Du, u, x)dx. (11)

If L satisfies the natural growth conditions and appropriate boundary conditons on
W 1,q, then the Frechet derivative of E lies in the dual of W 1,q,

δE
δu

= −∇ ·DpL(Du, u, x) + Lz(Du, u, x), (12)

and acts on an appropriate classes of test functions v by〈
δE
δu
, v

〉
=
∫
Ω

[DpL(Du, u, x)Dv + Lz(Du, u, x)v] dx. (13)

If L is coercive and convex then the energy E has a global minimizer over a broad
class of admissible sets, and the set of critical points of E ,

CE =

{
u ∈ A

∣∣∣∣∣ δEδu (u) = 0

}
, (14)

is non-empty. The primary goal of the direct methods of the calculus of variations
is to establish the existence of critical points of classes of Lagrangians, that is, to
construct minima and saddle points of the energy E .

Occasionally it is possible in a physical setting to “flip the sign” of the domi-
nant feature of an energy landscape, for example modifying a constituent material
so that its interfacial energy changes from a positive to a negative contribution to
the total energy balance. A fundamental question is whether the resulting energy
can be regularized in a systematic fashion so as to construct new classes of critical
points. A natural, and in some settings, physically meaningful approach is to reg-
ularize with the square of the variational derivative. Drawing upon the example of
functionalization of polymers, we call the resultant energy the functionalization of
the original energy.

Definition 1. If the energy E is differentiable for u ∈ A with its variational deriva-
tive lying in L2(Ω), then for any η ∈ L∞(Ω) we define the quadratic functionalization
of E relative to the local balance η to be

F(u) =
∫
Ω

[
1
2

(
δE
δu

)2

− ηL(u)

]
dx. (15)

The functionalized energy is typically higher order and requires more regularity
be imposed upon the admissible function space. If for example A ⊂ W 2,q(Ω) for
q > max{n, 2}, then A ⊂ W 1,∞(Ω) and the Frechet derivative, δE

δu , given by (12),
lies in Lq(Ω) ⊂ L2(Ω). The functionalized energy, F , maps A into R, and its critical
points balance the original energy against its own variational derivative. To focus
our efforts, we restrict our attention to Lagrangians of the separated form

L(p, z, x) = A(p) +B(z, x), (16)

where A has bounded second deriviative and is uniformly convex, while B satisfies
growth conditions and is sufficiently convex at ∞. More specifically we consider
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a bounded set Ω ⊂ Rn with a C2 boundary and we assume there exist µ, α > 0,
p1 ∈

(
1, n

n−2

]
, p2 ∈

(
0, 2

n−4

]
, z0 > 0, and β > 1 sufficiently large, such that

|D2
pA(p)| ≤ µ, (17)

ξtD2
pA(p)ξ ≥ α|ξ|2, ∀ξ ∈ Rn, (18)

|Bz| ≤ µ(1 + |z|p1), (19)
|Bzz| ≤ β(1 + |z|p2), (20)

Bzz(z, x) ≥ β, ∀|z| ≥ z0, x ∈ Ω, (21)

hold for all p ∈ Rn.
With these restrictions the functionalized energy is well defined on the following

natural spaces of admissible functions,

A0 = H2(Ω) ∩H1
0 (Ω), (22)

AN =
{
u ∈ H2(Ω)

∣∣∣DpA(Du) · ~n = 0
}
, (23)

and A0,N = A0 ∩ AN , where ~n is the normal on ∂Ω. The tangent planes of the
function spaces are given by A′0 = A0 and

A′N (u) =
{
v ∈ H2(Ω)

∣∣∣Duv = 0
}
, (24)

A′0,N = H2(Ω) ∩H1
0 (Ω) ∩ {Dv · n = 0} , (25)

where for all u, v ∈ H2 we define

Duv = D2
pA(Du)(Dv,~n). (26)

From the coercivity condition (18) it follows that the normal component of the
Du derivative is bounded away from zero, and in conjunction with homogenious
Dirichlet conditions, the Du derivative reduces to a homogenious Neumann condtion
in (25). Denoting the spaces of admissible functions generically by A and its tangent
space by A′(u), the critical points, CE , satisfy the weak formulation∫

Ω

DpA(Du)Dv +Bz(u, x)vdx = 0, (27)

for all v ∈ A′. However, since u ∈ A ⊂ H2, the elements of CE are strong solutions
of

δE
δu

(u) = 0, (28)

where the first variation of E takes the form
δE
δu

= −∇ ·DpA(Du) +Bz(u, x) = −D2
pA(Du) : D2u+Bz(u, x). (29)

From the assumptions (17), (19), and standard Sobolev embeddings, the first vari-
ation lies in L2(Ω). The quadratic part, QE , of E takes the form

QE(v, v) =
∫
Ω

DvtD2
pA(Du)Dv +Bzz(u, x) dx, (30)

for v ∈ A′, which induces a self-adjoint operator, the second variation of E ,

LEv ≡
δ2E
δu2

v = −∇ ·
(
D2

pA(Du)Dv
)

+Bzz(u, x)v. (31)
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Since the functionalized energy is not obviously bounded from below, nor coer-
cive, it is natural to ask under what circumstances it has a global minimizer over
A.

4. Minimization of the Functionalized Lagrangian. The essential step in con-
structing minimizers of F is to establish its coercivity, and this relies on the H2

regularity of the variational problem for E over A, which under conditions (17) and
(18) follows from classical results, [5, 19], which we restate below.

Proposition 1. If Ω ⊂ Rn is bounded with C2 boundary, and A satisfies (17-18)
then there exists c > 0 such that any weak solution u ∈ A of

∇ ·DpA(Du) = f, (32)

satisfies the estimate
‖u− 〈u〉 ‖H2 ≤ c‖f‖L2 . (33)

Our first result is the existence of global minimizers of the functionalized La-
grangian

Theorem 1. Let Ω ⊂ Rn be bounded with a C2 boundary with local balance function
η ∈W 1,∞(Ω) given. Then there exists β0 > 1 such that for any Lagrangian L of the
form (16) with A and B satisfying (17-21) for some β ≥ β0, then the functionalized
energy F given by (15) has a global minimizer over each of the admissible sets
A = A0,AN , or A0,N .

Remark: We may extend Theorem 1 to include existence of a minimizer under the
free boundary conditions, Af = H2(Ω), if we modify the functionalized energy to
include a boundary term

F(u) =
∫
Ω

[
1
2

(
δE
δu

)2

− ηL

]
dx +

∫
∂Ω

ηuDpA(Du) · ~ndS. (34)

The boundary term vanishes for the admissible sets considered in Theorem 1.

4.1. Lower Bounds and H2 coercivity. The first step in the proof is to show
that the functionalized energy is bounded below.

Lemma 1. There exists a constant C = C(|Ω|, B, ‖η‖W 1,∞) > 0 such that for all
u ∈ A, the functionalized energy F(u) is bounded below by

F(u) ≥ 1
4

∫
Ω

∣∣∣∣δEδu
∣∣∣∣2 − C. (35)

Proof. Without loss of generality we may assume that η ≥ 1 since if not we can add
and subtract a constant, η0 > 0,

F(u) =
1
2

∥∥∥∥δEδu
∥∥∥∥2

L2

−
∫
Ω

(η + η0)Ldx + η0E ,

for which η + η0 ≥ 1 while the functional η0E(u) is bounded from below under the
assumptions (18) and (21). Multiplying δE

δu by ηu, and integrating by parts, we have∫
Ω

δE
δu
ηudx =

∫
Ω

DpA(Du) ·D(ηu) + ηBz(u, x)udx. (36)
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Adding and subtracting the right- and left-hand sides of (36), respectively, to the
functionalized energy yields the expression

F(u) =
∫
Ω

1
2

(
δE
δu

)2

− η δE
δu
u+DpA(Du) ·D(ηu) + ηBzu− ηLdx (37)

Since η ≥ 0, Young’s inequalty implies that

η
δE
δu
u ≤ η

4‖η‖∞

(
δE
δu

)2

+ η‖η‖∞u2 ≤ 1
4

(
δE
δu

)2

+ η‖η‖∞u2, (38)

and grouping terms we have

F(u) ≥
∫
Ω

[1
4

(
δE
δu

)2

+ η
(
Bzu−B − ‖η‖∞u2

)
−

η
(
A(Du)−DpA(Du) ·Du

)
+ uDpA ·Dη

]
dx, (39)

To control the second line of (39) we Taylor expand A(p),

A(p0) = A(p) +DpA(p) · (p0 − p) +
1
2

(p0 − p)tD2
p(p̃)(p0 − p), (40)

where p̃ lies between p0 and p, set p0 = 0, p = Du, and use the convexity of A to
obtain the lower bound

A(0)− α

2
|Du|2 ≥ A(Du)−DpA(Du) ·Du. (41)

From condition (17) we have the bound

|DpA(p)| ≤ |DpA(0)|+ µ|p|, (42)

and hence

|uDpA ·Dη| ≤ C‖Dη‖∞|u| (1 + µ|Du|) ,

≤ α

4
|Du|2 + C

µ2‖Dη‖2∞
α

u2. (43)

Bounding the second line of (39) by (41) and (43), and using η ≥ 1, we see that the
functionalized energy is bounded below by

F(u) ≥ 1
4

∥∥∥∥δEδu
∥∥∥∥2

L2

− C +
∫
Ω

η(Bzu−B −
1
4
βu2)dx, (44)

for any β > 4
(
Cµ2‖Dη‖∞/α+ ‖η‖∞

)
. It remains to show that

h(z, x) ≡ Bz(z, x)z −B(z, x)− 1
4
βz2, (45)

is bounded below. We define

M := sup
x∈Ω,|z|<z0

|h(z, x)| <∞ (46)

and observe from (21) that for z ≥ z0, h satisfies

hz = (Bzz −
1
2
β)z >

βz

2
, (47)

and hence

h(z, x) ≥ β

4
(z2 − µ2)−M, (48)
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on z > z0. Similar arguements for z < −z0, and the bound (46) extend this inequal-
ity to all x ∈ Ω and z ∈ R. Inserting this bound into (44) and integrating over Ω
provides (35).

The following Lemma establishes the H2 coercivity of the functionalized energy
F .

Lemma 2. Under the assumptions of Theorem 1, there exist constants C1 > 0 and
C2 such that

|F(u)|p ≥ C1‖u‖H2 − C2, (49)

where p = max{p1/2, 1} for p1 ∈
(

1, n
n−2

)
as in (19).

Proof. First, we claim that there exists M > 0, such that

∇pA(p) · p ≥ α

2
|p|2 −M. (50)

Writing p = nl, where n = p
|p| and l = |p|, then for a fixed n

(DpA(p)−DpA(0)) · n =

l∫
0

∂

∂s
DpA(sn) · n ds (51)

=

l∫
0

ntD2
pA(sn)n ds ≥ αl. (52)

Multiplying by l, we have

DpA(p) · p ≥ DpA(0) · p + α|p|2 ≥ α

2
|p|2 − |DpA(0)|2

2α2 , (53)

which establishes (50). Take η = 1 in (36) and apply (50) to obtain the bound

α

2

∫
Ω

|Du|2 dx ≤
∫
Ω

u
δE
δu
−Bzudx+M |Ω|. (54)

Using Young’s inequality and adding α
2 ‖u‖

2
L2 to both sides leads to,

α

2
‖u‖2H1 ≤

1
2

∥∥∥∥δEδu
∥∥∥∥2

L2

−
∫
Ω

[(
Bzu−B −

1 + α

2
u2

)
+B

]
dx+M |Ω|. (55)

For β > 2(1 + α) the term in parenthesis is bounded from below by h, defined in
(45), while form (48) and (21), both h and B are bounded below, so that

α

2
‖u‖2H1 ≤

1
2

∥∥∥∥δEδu
∥∥∥∥2

L2

+ C, (56)

for some C > 0. Applying the lower bound (35) on F to the right-hand side, we
find there exist constants C1, C2 > 0, such that

‖u‖2H1 ≤ C1F(u) + C2. (57)

From condition (19), and the continuous embedding H1 ⊂ L2p1 , we may bound the
L2 norm of the derivative of the potential, B, in terms of the H1 norm of u,

‖Bz(u, x)‖L2 ≤ µ
(
|Ω|+ ‖u‖p1

L2p1

)
≤ C

(
1 + ‖u‖p1H1

)
(58)
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and from (57) we obtain the bound

‖Bz(u, x)‖L2 ≤ C1 |F(u)|
p1
2 + C2. (59)

From the form of the first variation, (29), it follows that u is a weak solution of (32)
with f = δE

δu −Bz(u, x), and from the H2 regularity result (33) and the H1 bound
(57) which controls the mass of u, 〈u〉, we have the following H2 estimate,

‖u‖H2 ≤ C
(
‖Bz‖L2 +

∥∥∥∥δEδu
∥∥∥∥
L2

)
. (60)

Combining the estimate (59) and the lower bound (35) from Lemma 1, we obtain
the H2 coercivity, (49), of the functionalized energy.

4.2. Existence of the Minimizer. With the results of Lemma 1 and Lemma 2
in hand, we complete the proof of Theorem 1. Since the functionalized energy is
bounded below, there exists a minimizing sequence {uν} ∈ A and numbers m > −∞
and M <∞, such that

M > F (uν)↘ m. (61)
From the H2 coercivity of F the sequence {uν} is bounded in H2 and there exists
a subsequence (without confusion, also labeled ν) and ū ∈ H2, such that

uν ⇀ ū weakly in H2. (62)

It remains to establish that ū ∈ A and the weak lower-semi-continuity of F in H2,
which together would imply

m = lim inf F (uν) ≥ F (ū), (63)

and establish ū as a minimizer. Both of these results are a consequence of the
following Lemma, which shows that the Lagrangian L is L1 continuous in the weak
H2 topology, and that its variational derivative δE

δu
is L2-weakly continuous in the

weak H2 topology.

Lemma 3. Let the Lagrangian L be given by (16), subject to the conditions (17-21).
If uν ⇀ ū in H2 weakly then the associated Lagrangian converges,

L(Duν , uν , ·)→ L(Dū, ū, ·), (64)

in L1 and the variational derivative of E converges
δE
δu

(Duν , uν , ·) ⇀
δE
δu

(Dū, ū, ·), (65)

weakly in L2.

Proof. Recalling the bound (42) we apply the mean value theorm to the variation
in A to find

|A(Duν)−A(Dū)| = |DpA(p̃) · (Duν −Dū)| (66)
≤ C (1 + |p̃|) |Duν −Dū| (67)
≤ C (1 + |Duν |+ |Dū|) |Duν −Dū|. (68)

However H2 ⊂⊂ H1, so uν → ū strongly in H1 and L
2n

n−2 . From the estimate above
we find ∫

Ω

|A(Duν)−A(Dū)|dx ≤ C‖Duν −Dū‖L2 (1 + ‖Duν‖L2) , (69)
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which converges to zero since the sequence ‖Duν‖L2 is bounded. From the mean
value theorem and (19) we have the estimate

|B(uν , x)−B(ū, x)| ≤ µ (1 + |uν |p1 + |ū|p1) |uν − ū|, (70)

for p1 ∈
(

0, n
n−2

)
. However ‖uν‖H2 is uniformly bounded and hence so is ‖uν‖L∞

for n < 4 and ‖uν‖
L

2n
n−4

, for n ≥ 4. In this later case, integrating (70) over Ω and

using Hölder’s inequality with the conjugate exponents q1 = 2n
n+2 and q2 = 2n

n−2 we
have

‖B(uν)−B(ū)‖L1 ≤ c (1 + ‖uν‖p1Lp1q1 + ‖ū‖p1Lp1q1 ) ‖uν − ū‖
L

2n
n−2

, (71)

which converges to zero since p1q1 ≤ 2n
n− 4 and hence ‖uν‖Lp1q1 is uniformly

bounded. In the case n < 4 the estimates are easier, and in all cases we estab-
lish that B(uν) converges to B(ū) in L1, which demonstrates the convergence of
L.

From the formula (29) for the functional derivative of E , it is sufficient to establish
that Bz(uν , ·)→ Bz(ū, ·) in L2 and

∇ ·DpA(Duν) ⇀ ∇ ·DpA(Dū), (72)

in L2. Following the arguments which lead to (71), and using (20), we find

‖Bz(uν)−Bz(ū)‖L2 ≤ c (1 + ‖uν‖p2Lnp2 + ‖ū‖p2Lnp2 ) ‖uν − ū‖
L

2n
n−2

, (73)

where p2 ∈
(

0, 2
n−4

]
so that np2 ≤ 2n

n− 4 and quantities within the parenthesis on
the right-hand side are uniformly bounded, while the last term tends to zero. To
address the weak convergence of the terms involving A, we observe that uν → ū
in H1 and hence Duν → Dū pointwise almost everywhere. In addition D2

pA(p) <
µ, so that the sequence ‖D2

pA(Duν)‖L∞ is uniformly bounded, and the Lesbegue
dominated convergence theorem implies that

D2
pA(Duν)→ D2

pA(Dū), (74)

strongly in L2. Because D2uν ⇀ D2ū weakly in L2, it follows that

∇ ·DpA(Duν) = D2
pA(Duν) : D2

xuν ⇀ D2
p(Duxū) : D2

xū, (75)

= ∇ ·DpA(ū), (76)

weakly in L2, which establishes (65).

Proof of Theorem 1: We first establish that ū ∈ A. We focus on the case
A = AN , for which the boundary condition is nonlinear and higher order. From
integration by parts, for all w, v ∈ H2(Ω) we have∫

Ω

∇ ·Dp(Dw)v dx = −
∫
Ω

Dp(Dw) ·Dv dx +
∫
∂Ω

vDp(Dw) · ~ndS. (77)

If we take w = uν then boundary integral is zero, while from Lemma 3 we see that
∇ ·Dp(Duν) ⇀ ∇ ·DpA(Dū) in L2 and uν → ū in H1 so that the volume integrals
converge, as ν →∞, establishing∫

Ω

∇ ·Dp(Dū)v dx = −
∫
Ω

Dp(Dū) ·Dv dx. (78)



FUNCTIONALIZED LAGRANGIANS 11

Comparing this result with w = ū in (77) yields∫
∂Ω

vDp(Dū) · ~ndS = 0, (79)

for all v ∈ H2(Ω) and hence Dp(Dū) · ~n = 0 and ū ∈ AN .
Since weak convergence is lower-semi continuous, it follows that

lim inf
∫

Ω

∣∣∣∣δEδu (Duν , uν , x)
∣∣∣∣2 dx ≥

∫
Ω

∣∣∣∣δEδu (Dū, ū, x)
∣∣∣∣2 dx. (80)

Moreover, η lies in L∞ and the Lagrangians L(Duν , uν , ·) converge in L1, so that∫
Ω

ηL(Duν , uν , x)dx→
∫
Ω

ηL(Dū, ū, x)dx. (81)

Taken together these two convergence results establish the weak lower-semi-continuity
of F ,

m = lim inf F (uν) ≥ F (ū). (82)

The functionalized energy, F , attains it global minima at ū, completing the proof
of Theorem 1.

5. Critical Points of the Functionalized Lagrangian. We examine the varia-
tional structure of the functionalized energy, and the relation between the critical
points of E and F .

5.1. Variational Structure of the Functionalized Energy. To examine the
first variation of the functionalized energy, F , we consider the restricted functional

i(τ) = F(φ(τ)), (83)

where φ : (−τ0, τ0) 7→ A for some τ0 > 0 is smooth and satisfies φ(0) = u ∈ A and
φ′(0) = v ∈ A′(u). We calculate the variation of F along φ,

i′(0) =
(
LEv,

δE
δu

)
L2

+
∫
Ω

[∇ · (ηDpA(Du))− ηBz(u, x)] v dx, (84)

where LE , the second variation of E , is given in (31). Distributing the differential
term in the volume integral and regrouping we define the weak critical points,
u ∈ CwF ⊂ A of F to be the solutions of(

(LE − η)v,
δE
δu

)
L2

= − (Dη ·DpA(Du), v)L2 , ∀v ∈ A′. (85)

In particular in the case that η is constant we have the inclusion CE ⊂ CwF .
If in addition the critical point u lies in H4 then integrating by parts in the inner

product we find

i′(0) =
(
δF
δu
, v

)
L2

+
∫
∂Ω

vDu
δE
δu
− δE
δu
Duv dS, (86)

where the variational derivative of F takes the form
δF
δu

=
(
LE − η

)δE
δu

(u) +Dη ·DpA(Du). (87)
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This motivates the definition of the strong critical points of F ,

CF ≡
{
u ∈ AF

∣∣∣ δF
δu

(u) = 0
}
, (88)

where AF0,N = A0,N ∩H4, and

AF0 (u) =
{
u ∈ A0 ∩H4

∣∣∣δE
δu

= 0 on ∂Ω
}
, (89)

AFN (u) =
{
u ∈ AN ∩H4

∣∣∣Du
δE
δu

= 0 on ∂Ω
}
. (90)

To characterize the critical points we investigate the second derivative of i at
τ = 0 which takes the form

i′′(0) = ‖LEv‖2L2 −
∫
Ω

η(DvD2
pA(Du)Dv +Bzz(u, x)v2)dx +

(
δE
δu
,LEw

)
L2

−
∫
Ω

η(DpA(Du)Dw +Bz(u, x)w) dx + (91)

(
δE
δu
,−∇ · (D3

pA(Du)(Dv,Dv)) +Bzzz(u, x)v2

)
L2

,

where w = φ′′(0) ∈ A′′. For the linear boundary conditions we have A′0 = A′′0 and
A′0,N = A′′0,N . However for the case A = AN then

A′′N (u, v) ≡
{
w ∈ H2

∣∣∣Duw = −D3
pA(Du)(Dv,Dv, ~n) on ∂Ω

}
. (92)

Integrating by parts on the terms involving η on the first and second lines of (91)
yields

i′′(0) = ((LE − η)v,LEv)L2 +
∫
Ω

Dη · (vD2
pA(Du)Dv + wDpA(Du))dx + (93)

(
δE
δu
, (LE − η)w

)
L2

−
(
δE
δu
,∇ · (D3

pA(Du)(Dv,Dv))−Bzzz(u, x)v2

)
L2

.

We decompose w = w0 +wv where w0 ∈ A′ is chosen to minimize ‖w−w0‖H2 and
wv = w−w0 ∈ A′′N is determined by the boundary values of v ∈ A′N . In particular,
wv = 0 for A = A0 or A0,N . Since u ∈ CwF and w0 ∈ A′, the weak characterization
of the critical points, (85), shows that the terms involving w0 drop out, and (93)
depends upon w only through wv.

Indeed if u is a strong critical point of F then w may be eliminated from the
formulation. Integration by parts shows that(

(LE − η)w,
δE
δu

)
L2

=
(

(LE − η)
δE
δu
, w

)
L2

+
∫
∂Ω

wDu
δE
δu
− δE
δu
Duw dS, (94)

however either w = 0 or Du
δE
δu = 0 and the first boundary term is zero. The strong

formulation of the critical point equation (87) permits us to rewrite the first term
on the right-hand side of (94) so that the equality reads(

(LE − η)w,
δE
δu

)
L2

+
∫
Ω

wDη ·DpA(Du) dx = −
∫
∂Ω

δE
δu
Duw dS. (95)
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Depending upon the admissible set A, either δE
δu = 0 or w ∈ A′′N and in this lat-

ter case we replace Duw with the boundary values from (92). This substitution
eliminates the w terms from (93),

i′′(0) = ((LE − η)v,LEv)L2 +
∫
Ω

Dη · (vD2
pA(Du)Dv)dx−

(
δE
δu
,∇ · (D3

pA(Du)(Dv,Dv))−Bzzz(u, x)v2

)
L2

+ (96)∫
∂Ω

δE
δu
D3

pA(Du)(Dv,Dv,n).

Finally integrating the divergence in the second line of (96) yields the strong form
of the second derivative of i, which is also the quadratic part, QF of F , namely

QF (v) = ((LE − η)v,LEv)L2 +
∫
Ω

Dη · (vD2
pA(Du)Dv)dx + (97)

∫
Ω

[
D3

pA(Du)
(
Dv,Dv,D

δE
δu

)
+Bzzz(u, x)v2 δE

δu

]
dx.

5.2. Saddle Points of F . For η constant, we see from the weak formulation of
the variational derivative of F , (85), that the critical points CE of E , are inherited
as weak critical point of F . A natural question is whether the global minima of F
is distinct from the critical points of E , and more generally if these inherited critical
points can be characterized. This we do in the following theorem.

Theorem 2. In addition to the assumptions of Theorem 1, let the local balance,
η, be constant, and let the admissible set A be either A0 or AN where in the latter
case the differential part of the Lagrangian, A, is restricted to be quadratic in p,
that is D3

pA = 0. Then for η = 0 the set CE is comprised of global minima of F ,
however there exists a constant 0 < η such that for all η ≥ η the set CE is comprised
of saddle points of F , and the global minimizer of F is distinct from CE .

The first step in the proof is to develop uniform estimates on the L∞ norm of
the elements of CE .

Proposition 2. Under the assumptions of Theorem 1, there exists a constant M >
0 such that

‖u‖H2 + ‖u‖L∞ ≤M, (98)
for all u ∈ CE .

Proof: Any u ∈ CE satisfies the critical point equation
δE
δu

(u) = −∇ ·DpA(Du) +Bz(u, x) = 0. (99)

Taking the L2 inner product with u and integrating by parts give the equality∫
Ω

DpA(Du) ·Du+Bz(u, x)udx = 0. (100)

However the convexity bound (50) on A and the similar result

Bz(z, x)z ≥ βz2 − C, (101)
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which follows from (21) for some C > 0, shows that

‖u‖H1 ≤M, (102)

for some M > 0, establishing a uniform H1 bound on CE . From (58) we see that
Bz(u, x) is uniformly bounded in H1 and hence from the H2 regularity applied to
the E critial point equation (99), we obtain a uniform H2 bound on CE . We can
bootstrap these estimates by taking the inner product of (99) with |u|2qu for q ≥ 1,
After an integration by parts we obtain∫

Ω

DpA(Du) ·D
(
|u|2qu

)
+Bz(u, x)|u|2qudx = 0. (103)

Using the differential identity

D(|u|ru) = (r + 1)|u|rDu, (104)

valid for r ≥ 1, we can rewrite this equality as∫
Ω

(2q + 1)|u|2qDpA(Du) ·Du+Bz(u, x)|u|2qudx = 0. (105)

while from the convexity bounds we obtain∫
Ω

(2q + 1)α
2

|Du|2|u|2q + β|u|2(q+1) − c|u|2q dx ≤ 0, (106)

for some c > 0. However using (104) we can re-write the first term as a pure
derivative and use Young’s inequality to absorb the last term into the power and a
constant, obtaining∫

Ω

(2q + 1)α
2(q + 1)2

|D (|u|qu)|2 +
β

2
|u|2(q+1) dx ≤ cq+1|Ω|, (107)

for some c > 0 independent of q ≥ 1. In particular dropping the first term on the
left-hand side and taking the 2(q + 1) root of the resulting inequality, we see that
‖u‖L2(q+1) is uniformly bounded, for all u ∈ CE , independent of q ≥ 1, and conse-
quently ‖u‖L∞ is uniformly bounded. In particular ‖Bz(u, ·)‖L2 is also uniformly
bounded for u ∈ CE , and hence from (99) and the H2 regularity result of Proposition
1, the uniform H2 bound on CE follows.

Proof of Theorem 2: The first statement is obvious since for η = 0, F ≥ 0 and
the minimum value F = 0 is attained for all u ∈ CE . We construct η > 0 such that
for all η ≥ η, the critical points CE are saddles of F . For each u ∈ CE and v ∈ A′(u)
we consider i as given by (83) and observe that η is constant, δEδu = 0, and A′′ ⊂ A′
so that wv = 0 in (93), which reduces to

i′′(0) = ((LE − η)v,LEv) . (108)

In particular, if LE has an eigenpair (v, λ) with v ∈ A′ then

i′′(0) = (λ2 − ηλ)‖v‖2L2 . (109)

Since LE is self-adjoint on A′, its spectrum is real and it suffices to construct η > 0
such that (0, η)∩ σ(LE) 6= ∅ for all u ∈ CE . From the Raleigh-Ritz characterization,
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the N ’th eigenvalue of LE is given by

λN = sup
dimVN =N

inf
v ∈ V ⊥N
‖v‖ = 1

(LEv, v)L2 . (110)

Define B by
B ≡ sup

u∈CE
‖Bzz(u, x)‖L∞ , (111)

which is finite since the critical points of E are uniformly bounded in L∞. For the
case A = A0 we introduce the operator

L = −µ∆ +B, (112)

from the boundedness of D2
pA, (17), we have

(LEv, v)L2 ≤ µ‖Dv‖2L2 +B‖v‖2L2 , (113)

=
(
Lv, v

)
L2 . (114)

Denoting N ’th eigenvalue of L by λN , by comparing the two Raleigh-Ritz charac-
terizations we see that λN ≤ λN . Similarly, denoting by B the uniform lower bound
on B(u, x) for u ∈ CE , we introduce the operator L = −α∆ +B, on Ω, and observe
from the convexity of A, (18), that

(LEv, v)L2 ≥ α‖Dv‖2L2 +B‖v‖2L2 = (Lv, v)L2 . (115)

We deduce that λN ≤ λN , where λN is the N ’th eigenvalue of L. Since λN and
λN converge to ∞ as N → ∞, we may pick N sufficiently large that λN > 0 and
then choose η > λN . It follows that for all u ∈ CE , λN ∈ [λN , λN ] ⊂ (0, η). Hence
i′′(0) < 0 and since LE has arbitrarily large eigenvalues it follows that i′′(0) > 0 if v
is the associated eigenfunction and u is therefore a saddle of F . In the case A = AN
we define the operators

Lv = −∇ · (D2
pA(0)Dv) +Bv, (116)

Lv = −∇ · (D2
pA(0)Dv) +Bv, (117)

which are self-adjoint on A′N and bound LE from above and below. The remainder
of the proof is identical.
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