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Abstract

A model of steady state operation of Polymer Electrolyte Mem-
brane Fuel Cell (PEMFC) stacks with straight gas channels is pre-
sented. The model is based on a decoupling of transport in the down-
channel direction from transport in the cross-channel plane. Fur-
ther, cross-channel transport is approximated heuristically using one-
dimensional processes. The model takes into account the consumption
of reactants down the channel, the effect of membrane hydration on
its conductivity, water crossover through the membrane, the electro-
chemistry of the oxygen reduction reaction, thermal transport within
the Membrane Electrode Assembly (MEA) and bipolar plates to the
coolant, heat due to reaction and condensation and membrane resis-
tance, electrical interaction between unit cells due to in-plane currents
in the bipolar plates, and thermal coupling of unit cells through shared
bipolar plates. The model corresponds to the typical operation with
counter-flowing reactant gas streams. The model is a nonstandard
system of non-smooth boundary value Differential Algebraic Equa-
tions (DAEs) with strong, nonlocal coupling. A discretization of the
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system and a successful iterative strategy are described. Some pre-
liminary analysis of the system and iterative strategy is given, using
simple, constant coefficient, linear versions of the key components of
the model. Representative computational results, validation against
existing experimental data and a numerical convergence study are
shown.

1 Introduction

Hydrogen is being seriously considered as a major energy carrier for
the future [13]. Fuel cells efficiently convert Hydrogen to electrical
power for automotive and portable applications. Two major benefits
of hydrogen fuel cells are their high conversion efficiency and the fact
that they have zero emmision (water is the only product of the catal-
ysed reaction of hydrogen and oxygen). A basic introduction to fuel
cells can be found in [20]. A more comprehensive description can be
found in [34]. Several important phenomena in Polymer Electrolyte
Membrane Fuel Cells (PEMFC) are reviewed in [36].

Several aspects of PEMFCs are still not well understood at a fun-
damental level, such as membrane transport, the influence of cata-
lyst layer structure on performance and the nature of two-phase flow
(liquid water and gas) in electrodes [36]. However, if one is will-
ing to take parametric descriptions of these phenomena derived from
more detailed models and experimental measurements, the question
remains how these locally fitted models will combine with more well-
understood phenomena of gas and electrical transport to determine
overall system performance, at the unit cell or stack level.

The earliest PEMFC system models [32, 14, 27] were for single
cells, at steady state under several simplifying assumptions. In [32]
only transport through the Membrane Electrode Assembly (MEA) is
considered, while in [14, 27] transport in gas channels is also con-
sidered, coupled locally at each channel location to MEA transport.
The reader unfamiliar with fuel cells may wish to consult Figures 1,
2 and 3 in Section 3 below. The power of such system level mod-
elling tools for scientific and commercial design was recognized. The
major focus for system modelling moved to 3-dimensional (3-D) mod-
els based on Computational Fluid Dynamics (CFD) codes, see e.g.
[6, 21, 22, 23, 24]. There are certainly valid reasons to turn to 3-D
models since there are genuine higher dimensional phenomena in fuel
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cells, especially gas flow effects connected with serpentine flow fields
[21] and two-phase flow effects in the cross plane [24] (these 2-D cross-
plane effects were the specific target of the study in [7]). However, at
least some of the interest in 3-D codes was the availability of robust
CFD software that was seen as a route to solve some of the numerical
difficulties associated with developing reduced dimensional models of
increasing complexity.

In recent years, researchers with more numerical background have
returned to the development of more comprehensive reduced dimen-
sional models [11, 4, 37, 39]. These are models that describe a fuel cell
with a 1-D model of gas channel flow coupled at each channel location
to a 1-D model of through-MEA transport. Our group began with
a basic unit cell model of this type [4], using several sets of experi-
mental data for fitting and validation. To this model were added the
effects of electrical coupling between unit cells in a stack environment
([3] with validation against experimental results in [18]). Also added
were simple models to describe the temperature variations through
the MEA and bipolar plates and the increase in coolant temperature
in each cell in a fuel cell stack [38, 29]. In [12], cell-to-cell variations
in Solid Oxide fuel cells due to thermal affects are considered in a
similar way. In the current paper, a reduced dimensional fuel cell
stack model is presented with all these effects included. A successful
iterative strategy for this complex model is identified. Components of
the iterative strategy are analyzed using simple, reduced models. The
analysis predicts that the iterative performance is grid independent,
which is observed computationally.

This work has two main purposes. First, it describes the successful
numerical implementation of a model containing many of the impor-
tant phenomena of an important new application. Second, it contains
a full description of a complex and highly coupled model that can be
used as a basis for further analytic and numerical work.

In Section 2 below, a summary of the nomenclature used in the
paper is given including the values of physical and fitted parameters
used in the model. In Section 3 a summary of fuel cell stack geometry
and a discussion of the dimensional reductions used in the model is
given. In Section 4 the model is presented followed by Section 5 on the
discretization and iterative scheme. The analysis of reduced models is
given in Section 6. In Section 7, the computational model is validated
against a number of historical experimental data sets. In Section 8,
sample computations from the model are given that show its power as
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a design tool. Also, a numerical convergence study is given.

2 Nomenclature

a: Molar concentration of membrane acid groups, 1200 moles/m3.

A: Scaled heat transfer factor to the coolant, value 4000 W/m2K.

ca: Anode channel water vapour concentration moles/m3.

cc: Cathode channel water vapour concentration moles/m3.

ch: Anode channel hydrogen concentration moles/m3.

co: Cathode channel oxygen concentration moles/m3.

Cref : Reference Oxygen concentration 40.9 moles/m3.

Dw: Membrane free water diffusivity, dependent on water content and
temperature m2/s.

dw: Fitted constant in expression for Dw m2/s, dw(T ) = 2.1 × 10−7

exp(-2436/T ) where T is in Kelvin [4].

D+: Membrane hydronium diffusivity, dependent on water content
and temperature m2/s.

d+: Fitted constant in expression for D+ m2/s, d+(T ) = 1.6 × 10−8

exp(-1683/T ) where T is in Kelvin [4].

E0: Fitted open circuit voltage 0.944 V.

F : Faraday’s constant 96485 C/mole

g: Coolant flow rate per unit orthogonal z times its heat capacity,
units W/mK, base value 529.

Ho: Enthalpy of hydronium formation, used in the temperature de-
pendence of Ke, value -52300 J/mole [33].

Hvap: Latent heat of vapourization 45400 J/mole.

i: local current density in A/m2.

iref : Fitted oxygen reduction reaction exchange current density 64
A/m2 [4].

iT : Target average current density for the simulation in A/m2, an
operating condition.

I l/l+1: Current in the bipolar plate between cell l and l + 1 per unit
orthogonal z, units A/m.
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j: Crossover flux of water from anode to cathode moles/m2.

ka, kc: Gas channel scaled pressure drop coefficients, base value 20,000
Pa s/m3.

Ke: Ion exchange equilibrium constant in membrane model, depends
on temperature, dimensionless.

Ko: Base value of Ke, value 6.2

L: Cell length 0.67m.

Lm: Membrane thickness 50 µ.

m, m+, mb: Membrane free water, hydronium, and bound proton
concentrations, scaled by a.

ma, mc: Anode and cathode side values of m.

m∗
a, m

∗
c: Equilibrium values of ma and mc.

M : Number of cells in the stack.

n: Ratio of nitrogen to oxygen in cathode inlet gas.

N : Number of discrete points in a uniform discretization of the chan-
nel length.

pa, pc: average anode and cathode channel pressure in Pa.

Psat: Saturation pressure of vapour, in Pa. Given as an empirical
function of temperature in K.

sa, sc: Stoichiometric flow rates of anode and cathode inlet gas streams,
dimensionless.

q = (qo, qc, qn, qh, qa): Channel molar fluxes (cathode oxygen, cathode
water, cathode nitrogen, anode hydrogen and anode water) per
unit orthogonal width (z) in moles/m/s.

ra, rc: Anode and cathode channel relative humidities, dimensionless.

R: Ideal gas constant 8.3143 J/K mole

t: average coolant channel temperature in K.

Ta,dew, Tc,dew: Anode and Cathode channel inlet dew points, K.

v: Local cell voltage.

VTN : Thermoneutral voltage for ORR 1.28 V.

wa, wc: Anode and cathode channel liquid water fluxes, per unit or-
thogonal width (z) in moles/m/s.
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x, y, z: coordinate system down channel, cross-channel, and through
MEA. See figure 1.

αc: Fitted cathode ORR transfer factor, value 1 (dimensionless).

δ : Fitted oxygen mass transport coefficient, 0.8 × 10−3 s mole/mC
[4].

γ: Fitted vapour mass transport coefficient 0.62 × 10−5 m/s [4].

γa, γc: Condensation rates in the anode and cathode channels, per
unit orthogonal z in moles/ms.

λ : Bipolar plate resistivity 4 × 10−3 Ω.

µp, µg, µm: Ratios of thermal conductivity to thickness for the bipo-
lar plates (2300), GDE (5000) and membrane (11200) in W/m2K.

ψ: Membrane concentration overpotential V.

φ: Membrane potential V.

θ = (θl, θo, θc, θa, θh): temperatures in K in the plate adjacent to the
coolant (l), in the cathode gas channel(o), at the cathode catalyst
sites (c), anode catalyst sites (a) and anode gas channel (h). See
Figure 2.

θm: Membrane temperature in K.

ω: Area-specific membrane resistivity Ω-m2.

3 Dimensional Reduction

Unit fuel cells with straight gas channels (such as the Ballard Mk
9 R©design) are considered as shown in figure 1 (not to scale). Oxidant
gas (air) and coolant flow in straight channels in the x direction. The
reactant gas (hydrogen) flows in straight channels, either in the +x di-
rection (co-flow operation) or in the −x direction (counter-flow opera-
tion). Numerical simulation of counter-flow operation (more common)
poses additional computational difficulties as shown below. Unit cells
can be of the order of a meter long, but often only a few mili-meters
thick.

More detail of the cross-plane (y − z) geometry is shown in figure
2 (also not to scale). Hydrogen gas moves from channel through the
anode Gas Diffusion Electrode (GDE, often a teflonated carbon fibre
paper) to the catalyst layer (it is thin enough to be considered as an
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Cathode Plate Coolant Channel

Figure 1: 3-D schematic of unit fuel cell.

interface), where Pt particles catalyse its oxidation, producing pro-
tons and electrons. The protons cross the membrane (an electronic
insulator but protonic conductor such as Nafion R©) where they react
with Oxygen coming from the oxidant channels at the cathode cata-
lyst sites (with the electrons coming through the external circuit) to
produce water. This reaction (the oxygen reduction reaction) has a
positive potential that provides the electrical power.

The high aspect ratio of a unit cell suggests that the x direction
transport is dominated by the gas channel and coolant flow. Further-
more, since the flow is slow enough to be laminar, these flows can
be described simply with average quantities in the x direction. This
leads to a “2+1 D” model, in which the cross-plane (y − z) problem
can be solved for each x and connected to 1-D models for the channel
flow. It is believed that these models are asymptotically valid. Some
preliminary estimates along these lines to justify the 2+1D modelling
of thermal transport are given in [29].

In the current work, the cross-plane (y − z) problem is further
reduced by averaging over y the transport through the membrane
and electrodes. A fitted, averaged diffusion parameter (δ) is used to
describe diffusive concentration differences of Oxygen from channel
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Figure 2: Cross-section of a unit fuel cell.

averages to catalyst sites. Similarly, a fitted parameter γ describes
diffusive effects of water from catalyst sites to channels. Temperature
profiles are considered to be constant in y and the values through the
unit cell at various locations are denoted by θ with a subscript as
shown in figure 2.

Unit cells (up to 100 or more) are placed in series to form fuel
cell stacks. The anode plate of one cell is placed next to the cathode
plate of the next (so that their voltages will add in the stack). The
combined plates are called bipolar plates. The reduced dimensional
geometry of our stack model is shown in figure 3.

4 Stack Model

Several elements of the model described below have been developed
previously: a basic, reduced dimensional unit cell model in [4] with
experimental fitting and validation of water crossover and effects of
cathode low inlet humidity, simple versions of the thermal model [38,
29], the electrical coupling through bipolar plate resistance [3] and
its experimental validation [18]. Below, these elements are brought

8



.

.

.

.

.

.

cell (j)

cell (j+1)

cell (j−1)

cathode plate (j+1)
anode plate (j)
anode gas channels (j)
MEA (j)

anode plate (M)

cathode gas channels (j)
cathode plate (j)
anode plate (j−1)

x

z

cathode plate (1)

Figure 3: Cross-section of a fuel cell stack.

together into a common model with full coupling between them. The
numerical handling of the full coupling of the models requires some
care as is shown below.

The equations to be solved are presented in complete detail, al-
though the details of the derivations are left to earlier work where
appropriate. A summary of Nomenclature can be found in section 2
above.

4.1 Fundamental Variables

In each unit cell the following quantities are to be determined for each
x ∈ [0, L]:

i: local current density in A/m2.

q = (qo, qc, qn, qh, qa): Channel molar fluxes (cathode oxygen, cathode
water, cathode nitrogen, anode hydrogen and anode water) per
unit orthogonal width (z) in moles/m/s.

pa, pc: average anode and cathode channel pressure in Pa.

t: average coolant channel temperature in K.
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θ = (θl, θo, θc, θa, θh): temperatures in K in the plate adjacent to the
coolant (l), in the cathode gas channel(o), at the cathode catalyst
sites (c), anode catalyst sites (a) and anode gas channel (h).

These variables are found in each unit cell of the stack. The cell index
will be denoted by a superscript l.

4.2 Locally Determined Secondary Variables

Several quantities can be determined locally from the fundamental
variables using algebraic models.

4.2.1 Gas Concentrations in Channels

Given the local values of the channel fluxes q, the channel tempera-
tures θo, θh, and the channel pressures pc, po it is possible to determine
the channel gas concentrations co, cc, ch and ca in moles/m3 using the
same subscript notation for fluxes q above. It is assumed that the
gases are ideal, obey Dalton’s law and move in the channel with a
common velocity. Consider first the cathode gas channel. There are
two cases to consider, depending on whether the cathode channel gases
are saturated or unsaturated.

Assume first that the cathode channel is unsaturated and compute

co =
pc

Rθo

qo
qo + qc + qn

(1)

cc =
pc

Rθo

qc
qo + qc + qn

(2)

where R is the ideal gas constant. Note that the first term on the right
of both equations above represents the total molar concentration of
gas at the cathode channel temperature and pressure and the second
term represents the fraction of this concentration the gas type occupies
based on its fraction of the total flux. More detailed description of this
flux to concentration map can be found in [4].

If the value of cc computed above is greater than Psat(θo)/(Rθo)
(where Psat is the saturation pressure of vapour as a function of tem-
perature for which an empirical fit is available [32]) then the cathode
channel gases are over-saturated. In this case, it is assumed that
vapour will condense to prevent over-saturation and the concentra-
tions co and cc above are replaced with the following values:

co =
pc − Psat(θo)

Rθo

qo
qo + qn

(3)
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cc =
Psat(θo)

Rθo
(4)

The cathode liquid water flux wc can also be determined

wc = qc −
cc
co
qo (5)

which would be zero in the dry case discussed in the preceding para-
graph.

The cathode channel relative humidity is given by

rc =
ccRθo

Psat(θo)
(6)

Similarly, anode quantities ch, ca, wa and ra can be computed.

4.2.2 Membrane Transport

It is assumed that the membrane is made of Nafion R© or similar ma-
terial. The material parameters described below are specifically fit-
ted to Nafion R©. Water crossover through the membrane from anode
to cathode j, membrane area-specific resistivity ω, and the so-called
concentration overpotential ψ can be determined from a detailed one-
dimensional transport and chemical model based on ideas in [33] that
can be solved analytically [4]. The analytic solution can only be found
for the case of a locally (in x) isothermal membrane and so for conve-
nience the average temperature

θm = (θa + θc)/2

is used.
In the model, the membrane contains uncharged, “free” water

molecules (concentration m) and water that carries an extra proton
(hydronium concentration m+). The concentrations are normalized
to the molar concentration of acid groups in the membrane material,
denoted by a. Consider distance through the membrane normalized
to z ∈ [0, 1] with z = 0 the cathode catalyst layer. In the model
used here, protons are carried as hydronium, which corresponds to
an electro-osmotic drag factor of unity. The higher electro-osmotic
drag factors seen in liquid water equilibrated membranes [35] are not
included in our approach.
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In the model, it is assumed that the membrane water transport is
dominated by diffusion

d

dz

(

Dw(m, θm)
dm

dz

)

= 0 (7)

where as indicated the diffusivity Dw depends on both water content
and temperature. The diffusivity is taken to be linearly proportional
to free water content [5]:

Dw = dw(θm)m. (8)

In this case, the free water profile can be written as

m(z) =
√

m2
c + (m2

a −m2
c)(z − 1) (9)

where ma and mc are the anode and cathode side boundary values
for the free water content determined below. The profile gives the
crossover flux:

j =
i

F + adw(T )
(ma)

2 − (mc)
2

2Lm
. (10)

The first term represents the water transported as hydronium to carry
the current. The second term is the diffusive flux, where the scaling
terms a and the membrane thickness Lm have been added to give a
dimensional quantity.

At equilibrium, the membrane free water content is determined by
the relative humidity r of the surrounding gas. The correlation for
Nafion R© in [32]:

m∗ = 0.043 + 17.81r − 39.85r2 + 36r3 (11)

is used. This expression can be used to determine both anode m∗
a and

cathode m∗
c side equilibrium contents from the anode ra and cathode

rc channel relative humidities. It should be noted that the relationship
above holds for vapour equilibrated membranes. When the membrane
is in contact with liquid water, the membrane water content jumps to
a higher level (so-called Schroeder’s paradox [35]). This phenomena
is not included in the present model.

If equilibrium values are used as Dirichlet conditions for (7), unre-
alistically dry membrane conditions at cathode inlet are predicted by
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the model. A simple mass transfer mechanism of vapour movement
from catalyst sites to channels with fitted parameter γ [4] is assumed:

j

a
= γ(m∗

a −ma) (12)

j

a
+

i

2F = γ(mc −m∗

c). (13)

On the left hand side of (13) above, the additional term represents the
water produced by the reaction, which must also leave the ionomer
material of the catalyst layer. For given ra and rc, values of m∗

a and
m∗

c are computed. Given also i and θm, equations (10,12,13) can be
solved for ma andmc, leading to a value for j and the free water profile
m(z) in (9). Algebraic manipulation leads to

mc =
1

2
(ξ+ + ξ−) , (14)

ma =
1

2
(ξ+ − ξ−) , (15)

where

ξ+ = m∗

c +m∗

a +
i

2γaF ,

ξ− =
m∗

c −m∗
a + 5i

2γaF

1 + dw(T )ξ+
Lmγ

.

If the resulting cathode water content mc from (14) is greater than
the maximum allowed at equilibrium (m∗ from (11) with r = 1) then
an alternate solution is used. The cathode content is taken to be the
maximum and the anode content is solved to match the flux condition
(12). An algebraic formula is available for this case also. Recent work
[25] shows that mechanical constraint of the membrane serves to cap
its water content at levels below the liquid isotherms even when it is in
contact with liquid water, consistent with the approach taken above.
Note that a slight error is made in the formulae above, assuming that
the free water content is the total water contentm+m+ for equilibrium
values and as used in the expression for Dw. Note further that a
single value γ is used for both absorption and desorption of water
from the membrane in this model. Recent work [15] suggests different
terms should be used for the two phenomena. Our value of γ can be
considered to be fit for the dominant cathode desorption rate.
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Following again the ideas of [33] presented in [4] the hydronium
concentration m+ and bound (to the SO3− acid groups of Nafion)
proton mb concentrations are balanced by an ion exchange equilib-
rium:

SO−

3 H+ + H2O ⇀↽ SO−

3 + H3O
+.

The equilibrium can be written mathematically as

mbmKe(θm) = m+(1 −mb) (16)

where the equilibrium constant has the form

Ke(θm) = K0 exp

[

−H0

R

(

1

θm
− 1

298

)]

.

The assumption of electroneutrality leads to

1 −m+ −mb = 0. (17)

Combining (17) with (16) leads to

m+ = −Kem

2
+

√

(

Kem

2

)2

+Kem. (18)

Using the profile (9) in (18) gives the hydronium concentration
m+(z) through the membrane. A balance for charge transport by
hydronium in the membrane is given by the Nernst-Plank equation:

−D+

Lm

dm+

dz
− F

Rθm
D+m+

dφ

dz
=
i

a
(19)

where the a and Lm terms appear due to the previous scaling of m+

and z. We take the hydronium diffusivity D+ to be dependent on θm

and linearly dependent on water content m with a similar form as (8)
above. In (19) all terms are known but φ(z). Integrating over z the
following is obtained:

φ(1) − φ(0) = ωi− ψ (20)

where ω is the membrane area-specific resistivity

ω =
RθmLm

aF2d+(θm)

∫ 1

0

dz

m(z)m+(z)
(21)
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and ψ is a concentration overpotential:

ψ =
Rθm

F ln

(

m+(1)

m+(0)

)

(22)

Although the relationships above have many details, they can be
considered conceptually as algebraic maps from inputs of local values
of θa, θc, ra, rc and i to outputs of local values of j, ω and ψ. That
the maps are algebraic, except for one numerical quadrature for (21),
allows for fast computations since this map must be computed at every
iteration for every grid point in every cell in the stack. However, more
complicated 1-D MEA models that can only be solved numerically on
a grid can also be used in the unit cell and stack framework described
below.

4.2.3 Voltage

The local cell voltage is given as

v = E0 − iω + ψ − Rθc

Fαc
ln

iCref

i0(co − δi)
(23)

where E0 is the open circuit voltage (taken from measurements) at
reference oxygen concentration Cref , and the second and third terms
on the right describes the voltage drop in the membrane derived in (20)
above. The final term is the overpotential that describes losses due to
the irreversibility of the reaction [26]. At very low current densities,
there are additional terms that modify the logarithm to give the open
circuit E0 in the limit. The parameters αc (transfer factor), δ (mass
transfer parameter) and iref (reference current) are fitted parameters.

In the last term on the right hand side co − δi approximates the
oxygen concentration at catalyst sites, lower than the channel average
because the oxygen must diffuse through the GDL and catalyst layer to
the active sites. The concentration reduction should be proportional to
the flux, which is proportional to the local current, leading to the given
form. Note that this form implies there is a maximum local current
that can be drawn, equal to co/δ. The mass transfer parameter can
be considered to be due to diffusion through a media with effective
length Leff :

δ =
Leff

Deff4F
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where the factor 4F is the conversion from current density to oxygen
molar flux. In reality, there are several diffusive effects in series lumped
in to this parameter.

4.3 Differential Algebraic Equations

4.3.1 Thermal Transport

In the simple model derived below, the thicknesses of the gas and
coolant channels are neglected and the heating due to channel con-
densation and overpotential losses are taken to be concentrated at
interfaces. Under these assumptions and the underlying assumption
of one-dimensionality (y) of through-MEA transport, the local ther-
mal profiles through the plate and MEA are piecewise linear (quadratic
through the membrane when uniform ohmic heating is assumed). The
following thermal balances result:

µp(θo − θl) + µg(θo − θc) = Hvapγc (24)

µg(θc − θo) + µm(θc − θa) = (VTN − v − ωi/2)i (25)

µg(θa − θh) + µm(θa − θc) =
1

2
ωi2 (26)

µp(θh − θl) + µg(θh − θa) = Hvapγa (27)

µp(θ
l
o − θl

l) + µp(θ
l−1
h − θl

l) = A(θl
l − T l) (28)

at cathode channel, cathode catalyst, anode catalyst, anode channel
and coolant channel, respectively. Specifically, the RHS of (24, 27)
are the heating due to channel condensation. Some algebra shows
that the uniform ohmic heating in the membrane results is equivalent
to an equal distribution of the heat to the anode and cathode sides
as shown in the RHS of (25, 26). On the cathode side (25) are also
the irreversible losses of the electrochemical reaction (VTN − v−ωi)i.
Here, VTN is the thermo-neutral voltage of the oxygen reduction re-
action with product vapour, µp, µg and µm are the ratios of thermal
conductivity to thickness for the plates, electrodes and membrane,
respectively. The parameter A is a scaled Nusselt number from conju-
gate heat transfer theory (see [29] for details). The physical parameter
Hvap is the heat of vapourization and γa, γc are the condensation rates
of the anode and cathode channel streams. These are given by:

γa = −dwa

dx
(29)
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γc =
dwc

dx
. (30)

In the last equation (28), heat fluxes into the coolant come from differ-
ent cells and so the cell number superscripts are used explicitly. From
Figure 3 it is clear that the coolant of cell l receives heat from the
cathode side of cell l and the anode side of cell l − 1.

4.3.2 Electrical Coupling

Differences in local current densities lead to in-plane currents in the
bipolar plates. The in-plane currents in the bipolar plate between cells
l and l+ 1 are labelled I l/l+1 as shown in Figure 4. These current are
the integrals (in z) of the x-directional current density. From current
conservation the following is obtained:

dI l/l+1

dx
= il(x) − il−1(x). (31)

In-plane resistance of the bipolar plate λ (per unit length to currents
per unit width) leads to changes in the cell voltage:

dvl

dx
= λ(−I l/l+1 + I l−1/l). (32)

Relationships (31, 32) should be clear from Figure 4. Differentiating
(32) and using (31) the plate currents can be eliminated, leading to
the so-called fundamental voltage equation:

d2vl

dx2
− λ(il−1 − 2il + il+1) = 0. (33)

A similar relationship is derived in [19].

4.4 Channel Conservation and Transport

In each cell, the following channel flux equations represent the effects
of gas consumption and water production and crossover:

dqo
dx

= − i

4F (34)

dqh
dx

= +
i

2F (35)

dqc
dx

= +
i

2F + j (36)

dqa
dx

= j (37)
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Figure 4: Diagram showing the derivation of Equations (31) and (32).

The cathode nitrogen flux is constant. Note that the case of counter-
flowing gas streams is considered: cathode gas flow is from left to right
but anode is from right to left. However, anode fluxes are considered
to be positive, hence the sign change in (35, 37).

Assuming laminar flow in the channels and viscosities independent
of pressure, temperature and composition (reasonable, see [28]) it is
appropriate to take the local pressure drop proportional to volumetric
flow rate:

dpc

dx
= −kc(qo + qc + qn −wc)

Rθo

pc
(38)

dpa

dx
= +ka(qh + qa + −wa)

Rθh

pa
(39)

where ka and kc are experimentally measured channel gas flow resis-
tance parameters with units s/m3. As above, the sign change in the
second term is due to the anode counter-flow. Note that the liquid
water flux does not contribute to the pressure gradient in this model.
Standard two-phase channel flow models (see e.g. [10]) are not appro-
priate for the small, capillary dominated flows found in hydrophobic
fuel cell channels. Experimental work is under way to identify appro-
priate handling of the effect of channel liquid water on pressure drop,
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including extreme phenomena such as channel flooding.
Coolant flow is taken to be from left to right (same direction as

the cathode channel gas flow). Taking into account the heat flowing
in to the coolant,

g
dtl

dx
= µp(θ

l
o + θl−1

h − 2θl
l) (40)

where g is the product of coolant heat capacity and flow rate (per unit
orthogonal direction z). Notice that in this equation the cell number
superscripts appear.

4.5 Boundary, End Cell and Global Condi-

tions

4.5.1 Boundary Conditions

The only boundary conditions independent of operating conditions are
the following:

dv

dx
(0) = 0 (41)

dv

dx
(L) = 0 (42)

for each cell. These represent the fact that cell ends are electrically
insulated.

4.5.2 Operating Conditions

Since the unit cells of the stack are connected in series, the same total
current runs through each of them. The total current is specified as
an equivalent target average current density iT . A global condition
for the model is that

1

L

∫ L

0
il(x)dx = iT (43)

for each cell l.
Inlet reactant fluxes are specified as stoichiometric ratios sa and

sc of the minimum molar flux to produce this current:

qo(0) = sc
iT
4F L (44)

qh(L) = sa
iT
2F L. (45)
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The constant cathode nitrogen flux is determined by the ratio of ni-
trogen to oxygen in the inlet stream:

qn = nqo(0)

where n ≈ 0.79/0.21 for dry air at standard conditions which has
approximately 21% oxygen and 79% nitrogen (and very small amounts
of other trace elements). The scaled coolant flow rate g, its inlet
temperature T (0), and the inlet pressures pc(0) and pa(L) must also
be given.

The cathode inlet water flux is dependent on the humidification
of the inlet stream, often expressed as a dew point temperature (a
vapour partial pressure equivalent to saturated conditions at this tem-
perature). If Tc,dew is the given cathode inlet dew point, then

qc(0) = (n+ 1)qo(0)
Psat(Tc,dew)

pc(0) − Psat(Tc,dew)

The water flux at anode inlet qa(L) can be determined similarly from
its inlet dew point Ta,dew.

Note that sa, sc, and g can be given different values in different
cells in the stack.

A somewhat subtle point is that additional information must be
specified at inlet if the channel conditions are saturated (which is
determined by the model). Typical operating conditions have unsat-
urated inlet gases, so this issue does not arise in the computations
shown in this work. An allowable additional condition when the in-
let gas stream is saturated is that there is no condensation at inlet,
which has the benefit of matching the condition for dry inlet gases.
However, the exact processes at inlet that act over an asymptotically
small region have been lost in the dimensional reduction of the model.

4.6 End Cell Conditions

M cells form the stack, numbered l = 1, . . . M . Again, using the
Ballard Mk 9 design as a template, an additional coolant channel
l = M + 1 is added to the anode side of cell M .

In this paper, the end plates are taken to be infinitely electrically
conductive and thermally insulated. The modifications to handle end
plates of finite resistance are discussed in [3]. More realistic thermal
end plate conditions are the subject of current research by the authors.
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The electrical end plate boundary conditions can be expressed in
terms of ghost values for i0 and iN+1 in (33):

i0 = i1 (46)

iM+1 = iM . (47)

Note that these conditions used in (33) integrated over x and using
boundary conditions (41,42) show that the total current through each
cell is the same. Thus, (43) is a single global constraint as expected.

The thermal end plate boundary conditions can be expressed in
terms of ghost values for θ0

h and θM+1
o in (28) and (40):

θ0
h = θ1

l (48)

θM+1
o = θM+1

l (49)

4.7 System Description and Important Cou-

pling

There are two main difficulties to the fuel cell stack system presented
above, besides just the complexity of detail of physical phenomena it
represents:

Nonlocality: There are two types of nonlocality in the model. The
first arises from the voltage/current coupling (33). Note that
this equation looks like a partially discretized elliptic operator
and so it is appropriate to describe this as elliptic coupling. The
second type is due to the counterflow operation: even if the
elliptic components of the model were specified, it cannot be
considered as an initial value DAE, but rather as a boundary
value DAE. The DAE is of index 1, so except for the point raised
below, can be considered to add no real additional difficulty to
the computation [1].

Lack of Smoothness: The lack of smoothness in the model arises
from the change between saturated and unsaturated conditions
in the flux to concentration map described in Section 4.2.1. This
lack of smoothness also corresponds to a change in the DAE
structure of the problem. When the channel is saturated, deriva-
tive terms appear in (24,27) and channel temperatures change
from algebraic to differential variables. A second source of non-
smoothness is the transition in the membrane solve from value
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(14) to the pinned maximum value. This is not handled explicitly
in the current code.

The three important couplings in the model are listed below:

1. The nonlocal coupling of current density to cathode oxygen con-
centration through flux consumption (34) to concentration (1)
or (3) to the concentration dependence of voltage (23) and its
nonlocal influence back to current densities (33). This coupling
is especially strong when the local current density is near its
maximum value (i near co/δ in (33)).

2. The nonlocal coupling of channel relative humidity to the water
crossover (10) through the relationships of section 4.2.2 leads to
changes in water fluxes (36,37) and so back to channel relative
humidities through (2) or (4) and then (6). The nonlocality
arises from the counterflow operation of the gas streams.

3. The local coupling of channel condensation to channel tempera-
ture when the channel (anode or cathode) is saturated. Channel
temperatures strongly affect channel water fluxes (5) through
(4). Channel condensation is the derivative of water flux (30)
and is a large heating source in the determination of channel
temperatures (24).

Simplified models (linear, constant coefficient) of these coupling mech-
anisms above and the analysis of their behaviour in our iterative ap-
proach are given in Section 6 below. The last mechanism above mo-
tivated our choice of semi-implicit discretization described in Section
5.1 below, in which the channel temperature and liquid water flux are
handled with an implicit solve.

The overall strategy is to break the model into computationally and
analytically manageable pieces. The local current densities are taken
as the primary variables. For given values of the local current densities,
channel fluxes and thermal profiles can be considered as a boundary
value DAE with the elliptic coupling removed. From the solution
of this problem, cell voltages can be computed and residuals in (33)
determined. In this way, the fuel cell model can be described as a non-
local equation of nonstandard character for the current densities. Note
that it is also possible to consider the problem with the cell voltages
as the primary variables. It was necessary to use this formulation to
match the experimental conditions in [18].

The existence and uniqueness of solutions to the model is an open
question. The model can certainly fail to have solutions if a target
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current iT is specified greater than the limit allowed by electrode oxy-
gen mass transport. At extremely low inlet humidification conditions,
fuel cells have been shown to have multiple steady state solutions [2].
The computational results shown in section 8 are based on conditions
away from these extreme cases.

5 Numerical Approximation

5.1 Discretization

The channel is discretized on a regular grid on [0, L] with N+1 points
with spacing ∆x = L/N . Algebraic conditions (1-6, 10-15, 20-28) ap-
ply at each grid point. First order forward difference approximation
is used for the derivatives in anode condensation (29), cathode gas
fluxes (34,36), and cathode pressure (38). First order backward differ-
ence approximation is used for the derivatives in cathode condensation
(30), anode gas fluxes (35, 37), anode pressure (39), and coolant tem-
perature (40). The second order derivatives in (33) are approximated
with centered differences and the ghost points introduced are elimi-
nated using the boundary conditions (41,42). The resulting discrete
approximation of the system (33) is consistent but rank deficient of
order one. One equation of the system is replaced by a trapezoidal
rule approximation to (43) in one cell. The expression (23) is regular-
ized at currents near and past the maximum current as described in
[3].

The use of first order one-sided differencing approximation and
the lack of smoothness in the flux to concentration map at satura-
tion points (it is Lipchitz continuous but not differentiable) limits the
accuracy of the approximation to O(∆x). Given the state of accu-
racy of the underlying models and the engineering application, this is
acceptable.

5.2 Iterative Solution Strategy

As foreshadowed in section 4.7, the iterative strategy is based on an
outer iteration on discrete local current densities. For given current
densities, the DAE boundary value problems for the channel fluxes,
channel pressure and coolant temperatures are solved by back and
forth shooting [9]. Details of the iterative strategy are given below.
It should be noted that several variants on the iterative strategy have
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been implemented, and the following is the most robust. Some ana-
lytic insight into the iterative approach is given in Section 6.

5.2.1 DAE boundary value problem

In the back and forth shooting strategy, the anode and cathode chan-
nel fluxes and pressures are updated in an alternating fashion. When
the cathode channel fluxes are updated, the anode channel fluxes,
pressure and concentrations are held fixed. Similar cathode quantities
are held fixed during the anode update. The coolant channel temper-
ature is updated during the cathode update, and is held fixed during
the anode update. The temperatures θ are updated in both directions.

In the cathode update, cathode fluxes and pressures are updated
with explicit approximation of (34), (36), and (38) in each cell. With
the channel fluxes and pressures (and the local current held fixed from
the outer iteration) given at the next grid point, a nonlinear problem
for θ and t in all cells remains. Given an initial guess for these quanti-
ties and assuming for now that the cathode conditions will be unsatu-
rated, (1), (2) and (6) can be used to compute cathode concentrations
and relative humidities. Membrane quantities can be determined from
the algebraic relationships in section 4.2.2 and the cell voltage can
also be computed from (23) for each cell. In this way, residuals in
(24-28) and the implicit discretization of (40) can be computed and θ
and t for each cell adjusted to satisfy the system of equations. If at
convergence the unsaturated cathode assumption is not satisfied for
particular cells, the solve is conducted assuming these cathodes are
saturated. The iteration scheme is an approximate Newton approach,
ignoring the weak dependence of resistivity ω and cell voltage v (that
enter the RHS of equations (25,26)) on the temperatures in the com-
putation of the Jacobian. However, when channels are saturated, the
dependence of water flux on channel temperature and hence its in-
fluence on condensation rate γc computed by difference formulae that
enter (24) must be used in the approximate Jacobian to obtain con-
vergent iterations. At cathode inlet, a reduced system is solved, using
the fixed inlet coolant temperature t. The cathode sweep is followed
by an equivalent anode sweep using fixed coolant temperatures and
cathode conditions.
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5.2.2 Current Density Update

For given discrete current densities, the DAE problem can be iter-
atively solved as above. The solution of this problem provides the
voltage v at all points and all the quantities in (23). Residuals in the
discrete equations (33) can be computed. An approximate Newton
step that preserves the stack current is used to update the discrete
current densities. The approximate Jacobian used for the update uses
a local approximation of voltage sensitivities to current density, that
is ∂vl

j/∂i
l′
j′ (where the subscript is the discrete channel location) is

taken nonzero only when l = l′ and j = j′ and its value is just the
explicit derivative of v from (23) with i evaluated at the given values
of ω, co, i =l

j and θc.

5.2.3 Initialization

Initialization was done with uniform current density iT and channel
fluxes equal to inlet values. A preliminary, reduced channel solve
was performed with all temperatures held constant, equal to the inlet
coolant temperature. This was followed by full channel and current
density iterations described above. In the runs conducted with the
computational model for the parameters given, it was found that this
initialization was sufficient to obtain overall convergence. In poten-
tially more computationally challenging parameter regimes, a contin-
uation approach could be used.

5.3 Co-flow model

The model and computational method for the case of counter-flowing
channel gases was presented above since it is much more complicated
than the co-flow reactant gas case. When anode and cathode gases
are configured to run in the same direction, the channel component
of the method described above becomes a standard, initial value DAE
that can be solved from inlet to outlet without iteration.

5.4 Implementation

Early versions of the computational model were implemented in MAT-
LAB. In order to make the computational tool faster and more portable
and retain graphical interfaces, a version in java was implemented.
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6 Simplified Analysis

There are three key elements to the iterative procedure: the local
approximation of voltage sensitivity in the current updates, the use of
back and forth shooting for water crossover, and the use of back and
forth shooting to compute temperature profiles that include the effects
of channel condensation heating. The first two of these elements are
examined in turn below using constant coefficient continuum models.
The analysis shows the channel discretization independence of the
iterative schemes and the limits of applicability of the schemes in
terms of parameter ranges.

6.1 Local approximation of voltage sensitivity

A reduced, constant coefficient linear model is constructed below that
preserves the structure of the nonlocal coupling of local current densi-
ties to channel oxygen concentrations. The iterative scheme of updat-
ing local current densities using local voltage sensitivities is examined
using this model.

A stack is considered with some idealizations: it is taken to be
isothermal at temperature θ, the channels are taken to be everywhere
saturated, the membrane resistivity ω is taken to be constant and
the concentration overpotential ψ in (23) is neglected. With these
simplifications, the anode channel can be removed from the model
since it no longer impacts performance. In each cell, there is oxygen
consumption (34), the relation at saturation of oxygen concentration
to flux (3), and the local voltage relationship (23). The fundamental
voltage equation (33) connects cells.

Assume that all cells operate at the same cathode stoich sc. The
quantities i, co, qo and v are relabelled to represent the difference to a
base solution. These are vector quantities with entries for each cell but
the superscript l for cell number has been suppressed. The relationship
(34) is linearized at inlet channel conditions and (23) is linearized at
inlet channel conditions and average current density iT . Further, x
is scaled so that the channel length L is unity. The following system
results:

dqo
dx

= −C1i (50)

co = C2qo (51)

v = −C3i+ C4co (52)
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d2v

dx2
− λL2Ai = 0 (53)

where C1, C2, C3 and C4 are positive constants given below:

C1 =
L

4F
C2 =

pc − Psat(θ)

Rθ
n

(n+ 1)2
1

qo(0)

C3 = ω − Rθ
αcF

(

1

iT
+

δ

c∗ − δiT

)

C4 =
Rθ
αcF

1

c∗ − δiT
.

Above, c∗ is the oxygen concentration at inlet

c∗ =
pc − Psat(θ)

Rθ
1

1 + n
.

The matrix A acts locally (in x) on the M vector of local currents for
the M cells: (Ai)l = il−1 − 2il + il+1 for l 6= 1,M and (Ai)1 = i2 − i1,
(Ai)M = iM−1− iM using the end conditions described in Section 4.6.
Boundary conditions v′(0) = v′(1) = 0 apply in each cell and initial
conditions qo(0) = 0. Since i represents differences to base currents,

∫ 1

0
i(x)dx = 0 (54)

in each cell.
The iterative scheme for the local current densities can be de-

scribed in this linear framework as

dq
(n+1)
o

dx
= −C1i

(n) (55)

(the update of fluxes based on previous current densities) in each cell
where the bracketed superscript denotes iteration level. These fluxes,
using relationship (51), and the as yet unknown local current densities
determine the voltage at the next iteration:

v(n+1) = −C3i
(n+1) +C2C4q

(n+1)
o (56)

The new current densities are chosen such that v(n+1) above satisfies
the equation (53) and the boundary conditions for the voltage. This
system can be written:

−C3i
(n+1)′′ − C5i

(n)′ − λL2Ai(n+1) = 0 (57)
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where C5 = C1C2C4. To proceed, note that A is symmetric with
eigenvalues αl for l = 0, · · ·N − 1 that lie in the interval (−4, 0] (A is
the second order finite difference derivative operator with first order
approximation of Neumann boundary conditions). Solutions to (57)
are sought of the form

i(n)(x) = i(x)elG
n

where G is a scalar, i(x) is a scalar function and el is the l’th eigen-
vector of A. Equation (57) becomes

Gi′′ + C6i
′ + C7Gαli = 0 (58)

where C6 = C5/C3 and C7 = λL2/C3. This boundary value problem
has the boundary conditions Gi′ +C6i = 0 at x = 0, 1 (inherited from
v′ = 0) and can be considered as a generalized eigenvalue problem for
G, the iterative scheme growth factor. For αl = 0 the boundary con-
ditions are dependent and the system is augmented with the integral
condition (54).

Using standard techniques for boundary value problems, G is found
to be always imaginary with values

G =
îC6

2

1
√

n2π2 − C7αl

, (59)

for n nonzero integers. The term î is used for
√
−1 to distinguish

it from the current. The eigenfunctions are a shifted Fourier cosine
series. Note that the largest value of |G| occurs for n = 1 and αl = 0.
Thus, the outer electrical iterations will converge when the dimension-
less number

Ω =
C6

2π

is less than one. This number represents the ratio of local to global
influence of current density on voltage.

The value of Ω is estimated as follows. A fixed membrane area-
specific resistivity ω = 1 × 10−5Ω − m2 is used (recall that in the
reduced model of this section, the dependence of membrane resistivity
on hydration is not considered). Standard Ballard Mk9 R© conditions
are considered: temperature θ = 350K, cathode pressure pc = 3 ×
105Pa, target current density iT = 10000A/m2 and cathode inlet
stoichiometric flow rate sc = 2. The following is obtained

Ω ≈ 0.088.
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This explains the almost Newton-like convergence of the outer itera-
tions.

Note that the form of (59) predicts that neither higher wavenum-
ber modes (from finer discretizations) nor the number of cells M in
the stack limit the convergence rate of this aspect of the iterative so-
lution strategy. This matches computational evidence of convergence
independent of grid refinement. The signature of the Ω > 1 instabil-
ity in computations would be iterative growth of a low-wavenmumber
mode (M = 1) uniform in all cells of the stack (αl = 0).

6.2 Water crossover

In this section, one element of the “back and forth” shooting strategy is
considered: the convergence in anode and cathode channel water flux
due to crossover. The analysis that follows corresponds to regions
of the cell where both anode and cathode channels are dry. Since
crossover is limited to one cell, it is sufficient to consider a single cell
in the stack to analyze the performance of the iterations. During these
iterations, the local current density is given and held fixed. A linear,
constant coefficient model is constructed as above by linearizing the
channel water flux to relative humidity map (2,6) at inlet conditions
and given current density iT . The cell is again considered to be at
uniform temperature θ. The anode and cathode relative humidities
determine the diffusive flux. This relationship is also linearized and
the quantities below represent differences to the base solution:

j = C1ra − C2rc (60)

ra = C3qa (61)

rc = C4qc (62)

dqa
dx

= Lj = C5qa − C6qc (63)

dqc
dx

= Lj = C5qa − C6qc (64)

where C1 to C6 are positive constants described below and the chan-
nel has been scaled to unit length as above. The constants C1 and
C2 (with units moles/m2/s) could theoretically be determined analyt-
ically through the formulae in section 4.2.2 but it is more practical to
determine them by numerical differentiation at given current iT , tem-
perature θ and common anode and cathode base relative humidity r.
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From formulae (2,6) and similar formulae for the anode,

C3 =
pa(1)

Psat(θ)

qh(1)

(qh(1) + qa(1))2

C4 =
pc(0)

Psat(θ)

qo(0) + qn(0)

(qo(0) + qn(0) + qc(0))2

where qc(0) and qa(1) are determined to match the given base relative
humidity r. The remaining dimensionless constants

C5 = LC1C3

C6 = LC2C4

represent the strength of coupling of anode and cathode water fluxes
through membrane crossover.

The iterative strategy applied to (63,64) is the following:

dq
(n+1)
c

dx
= C5q

(n)
a − C6q

(n+1)
c (65)

dq
(n+1)
a

dx
= C5q

(n+1)
a − C6q

(n+1)
c (66)

with q
(n)
c (0) = 0 and q

(n)
a (1) = 0 (recall, at this level, these fluxes are

considered to be differences to a base solution). This corresponds to
anode conditions held fixed while the cathode fluxes are updated from
right to left. This is followed by an anode flux update from left to
right.

The system (65) and (66) can be reduced (after an iteration index
shift) to a higher order system in qc alone:

q(n+1)′′
c + (C6 − C5)q

(n+1)′
c + C5C6(q

(n)
c − q(n+1)

c ) = 0. (67)

Allowing a slight abuse of notation, the form

q(n)
c (x) = Gnq(x)

is assumed, leading to

q′′ + (C6 − C5)q
′ + C5C6(

1

G
− 1)q = 0 (68)

with q(0) = 0 and q′(1) +C6q(1) = 0. This again is a boundary value
problem that can be solved with standard methods to give

G =
C5C6

C5C6 + 1
4(C6 − C5)2 + µ2

(69)
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where µ takes the nonzero discrete values that solve

µ cosµ+
1

2
(C6 + C5) sinµ = 0. (70)

The eigenfunctions q are a nonstandard, exponentially weighted sine
series.

It is clear from (69) that G is real and positive with G < 1. Thus,
this iteration scheme always converges. The largest value of G is ob-
tained from the smallest root µ of (70). As in the result above, the
higher wavenumber modes converge more quickly. Thus, the perfor-
mance of the discrete iterative scheme is predicted (and observed)
to be grid independent. An estimate of the maximum value of G,
assuming θ = 350, r = 0.81 for anode and cathode (corresponding
to Tdew ≈ 345K), anode and cathode pressures of 3×105 Pa, and
inlet conditions for anode and cathode stoichiometric flow rates of
sa = sc = 2, leads to

Gmax ≈ 0.073.

An alternate iterative strategy for channel fluxes in counterflow
operation was proposed in [37]. It can be analyzed similarly to the
steps above and the prediction is that the method is unstable. The
authors of [37] report that under-relaxation of their scheme is required
(but that performance is still reasonable in this case).

7 Validation

A large, historical experimental data set based on Ballard Power Sys-
tems Mk 9 R© hardware is available. This data was used to fit and
validate preliminary versions of the model [4, 18]. Some of these vali-
dation studies are summarized briefly below, demonstrating that the
complete stack model developed here can capture many phenomena of
interest. In the next section, more speculative computations are given,
showing the power of the model as a simulation tool for understanding
fuel cell operation and virtual design optimization.

7.1 Unit Cell

In Figure 5, comparisons between model and experimental results of
global quantities are shown. These include polarization curves (graphs
of cell voltage versus average current density) for both air and pure
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Figure 5: Validation of unit cell polarization curves and total water crossover.

oxygen operation and also total water crossover (the net amount of
water leaving the anode as a fraction of the water produced by the
current). In Figure 6, comparison between model and experimental
results of local current density and its dependence on cathode sto-
ichiometric flow rate and humidification are shown. Details of the
experimental conditions for this data are given in [4].

7.2 Electrical Coupling

In Figure 7 a comparison between the model and experimental results
on the effects of electrical coupling between cells in a stack is given. A
short stack of 15 cells is used for the experiment. The centre cell (#
8) has an anomaly created by covering the third of the active area of
the cell near the cathode inlet with a non-conducting layer. Current
from the neighbouring cells in this region is forced around this region
and the resulting currents in the bipolar plates create the voltage
variations shown in the figure. Details of the experimental conditions
for this data are given in [18].

7.3 Future Validation

Experimental work is in progress to validate the thermal coupling as-
pect of the model. Still missing are validation studies that incorporate
several of the phenomena coupled together. All the experimental data
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2 4 6 8 10 12 14
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Cell Voltage for Stack with Inactive Section in Center Cell

Cell Number

V
ol

ta
ge

 [V
]

 

 

Inlet
Middle
Outlet

Figure 7: Validation of voltage variations in a stack with an anomalous centre
cell.

33



available is purposely targeted to validate a single aspect of the model.
Consider the extreme anomalies in Section 8.2. It is shown that the
large electrical anomaly considered there does not lead to significant
thermal anomalies. Also, the large thermal anomaly case does not
lead to significant changes in current density. A different situation in
which a large thermal anomaly does not lead to significant changes in
local current density in the stack setting is shown experimentally in
recent work [31].

If one includes the effects of liquid water, there are several possible
strong interactions between thermal and electrical effects. Consider
for example the situation at end cells: they are cooler due to convec-
tive heat loss from their surfaces. Thus, end cells tend to have more
liquid water in their gas channels. This liquid water impedes reactant
gas flow from gas headers, leading to lower stoichiometric flow and
anomalous current density profiles. We believe we can include these
effects and capture this kind of phenomena in future versions of the
model in the framework developed here.

8 Computational Results

8.1 Unit Cell Results

We consider a base case with the following operating conditions:

• pa = 3.2 ×105 Pa

• pc = 3 ×105 Pa

• sa = 1.2

• sc = 1.8

• t(0) = 343K

• iT = 10000 A/m2 (1 A/cm2).

• g = 529 W/mK.

• Ta,dew = 336K

• Tc,dew = 336K

• counterflow operation.

Four changes to these base conditions are considered:

reduced cathode flow : sc = 1.2
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Figure 8: Unit Cell computational results showing the base case, cathode
understoich, and reduced coolant runs.

reduced coolant flux : g halved

co-flow operation

reduced inlet humidity (dry) cathode : Tc,dew = 296K

In figure 8 the cathode channel temperature and the local current
density is shown for the base case, cathode understoich, and reduced
coolant runs. Figure 9 shows the same plots for the base case, co-
flow, and dry cathode inlet runs. In Figure 8 higher temperatures
are seen for the reduced coolant case as expected but also for the
reduced cathode inlet flow rate: less oxygen means the cell operates
less efficiently and generates more heat. The reduced oxygen flow
rate case also features a current density profile skewed towards inlet,
where the channel oxygen concentration remains high. In the reduced
coolant case, the higher temperatures make the cathode dryer at outlet
(more water crosses over to hydrate the inlet hydrogen stream). The
dryer membrane at outlet has higher resistance and the current density
shifts towards inlet.

In figure 9 most of the structure is due to humidification effects.
The dry cathode inlet causes a higher membrane resistivity (lowering
local current) in a region near inlet before the cathode gas saturates.
In the co-flow case, the combination of under-saturated anode and
cathode leads to a similar but smaller effect. Note that in all three
cases the abrupt change in channel temperature slope occurs where
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Figure 9: Unit Cell computational results showing the base case, co-flow,
and dry cathode inlet runs.

the cathode channel saturates and condensation heating begins. In
the counterflow runs, the dip in temperature at outlet corresponds to
the evaporative cooling of water leaving the saturated cathode channel
and crossing over to the dryer anode inlet.

8.2 Stack Results

A stack ofM = 13 cells (with 14 bipolar plates and coolant channels) is
considered with a discretization of N = 100 points down the channel.
All cells but the centre #6 are run at base conditions. The centre cell
is run at anomalous conditions. The results of the centre cell run at
reduced cathode flow rate sc = 1.2 are shown in Figure 10. Because of
the electrical coupling through shared bipolar plates, the local current
density of the anomalous cell is not the same as that of the equivalent
low stocih isolated unit cell shown in Figure 8. Its effect extends over
adjacent cells as predicted by the simple theory presented in [3]. Note
that the voltage also has significant variation.

Using the anomalous cathode flow rate case above, a numerical
convergence study is performed. Approximate errors are obtained by
comparing the solutions on grids of N and 2N points. Maximum norm
errors are shown in Table 1 for cathode channel temperature θo and
current density i. First order convergence is clearly seen.

In Figure 11 a second stack run is shown using an anomalous centre
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Figure 10: Stack computational results of an anomalous centre cell with
reduced cathode inlet gas flow rate

N i θo

200 17.2285 0.044222
400 8.6456 0.022609

Table 1: Maximum norm differences of discrete solutions on grids with N

and 2N points.
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Figure 11: Stack computational results of an anomalous centre cell with
reduced coolant flow rate

cell with reduced (by half) coolant flow rate. Because of the thermal
coupling through shared bipolar plates, the effect on the temperature
of the anomalous cell is decreased from that of the equivalent low
coolant flow rate isolated unit cell shown in Figure 8. Although the
end plates are thermally insulated, the temperatures at the end cells
are cooler than the interior cells due to the extra coolant channel at
the ends.

9 Summary and Future Work

A comprehensive model of a PEMFC stack has been presented. The
model contains many aspects important to fuel cell operation. A ro-
bust implementation is given. The main contribution of this work is
the separation of the complex model into computationally manage-
able pieces. The computational method is backed by some simplified
analysis and a convergence study.

Several elements of this stack model have been experimentally val-
idated. Good agreement with unit cell experimental data for polar-
ization curves, overall water crossover and also current density under
variations of air flow rate and humidification is obtained. Good agree-
ment is also obtained for electrical coupling of an anomalous centre cell
in a small stack. Experimental work on stack level thermal coupling
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that could validate this aspect of the model is in progress.
The most important missing aspects to the model are liquid wa-

ter transport in channels and electrodes, thermal end cell effects and
flow sharing effects between cells from shared gas headers. Prototype
versions of the stack computational model add in more realistic ther-
mal end plate effects. Flow sharing effects through inlet headers has
also been considered [8], similar to the approach taken in [17]. The
development of a stack model that features a more realistic descrip-
tion of transport in the electrodes including liquid water and its slow
transients following the analytic work in [30] is currently under way.
The effect of channel liquid water on pressure drop (that will change
the reactant flow to each cell through header coupling) is not readily
amenable to theoretical study. To be able to include these effects,
empirical fits to experimental data would be needed.
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