
Math 132-12 & 16 Fall 2003

Homework Project Due Fri 9/12

1. Compute the derivative of each function f(x) below by algebraically com-
puting the limit

f ′(x) = lim
h→0

f(x + h) − f(x)

h
.

The strategy is always to cancel a factor of h from the top and bottom. Some
algebraic formulas you will need:

a2 − b2 = (a − b)(a + b), a3 − b3 = (a − b)(a2 + ab + b2).

a. f(x) = (2x + 1)2. b. f(x) =
√

2x + 1. c. f(x) = x3. d. f(x) = 3
√

x.

e. (Extra Credit) How far can you go in computing the derivative of f(x) =
sin(x) ? (I mean compute with explanations, not just by quoting the answer
from some authority.)

2. With your calculator, numerically estimate the following derivatives

f ′(x) ∼= ∆f

∆x

using the indicated increments ∆x = h.

a. f(x) = 3
√

x, x = 2, with h small enough to get 3 decimal places of accuracy.
Compare with the exact answer from 1(d).

b. f(x) = 3
√

x, successively x = 0.0, 0.1, 0.2, . . . , 1.9, 2.0, always taking
h = 0.1. Write the results in a table.

c. f(x) = sin(x), successively x = 0.0, 0.1, 0.2, . . . , 1.9, 2.0, always taking
h = 0.1. Write the results in a table.

3. Use Excel or another spreadsheet to plot the following graphs.

a. Plot the points in your table from 2(b) for the approximate derivative
function ( 3

√
x)′. In the same picture, plot the graph of the exact derivative

from 1(d). How do they compare? Why are they not exactly equal?

b. Plot the points in your table from 2(c) for the derivative function sin′(x).
Make a guess of a formula for sin′(x) based on this graph.

4. Do Ch. 2.1, Exercise 34, p. 118. This covers the physical meaning of
derivative (f ′(x) is the rate of change of f(x) at each x), as well as the graphical
meaning: the function giving the slopes of the graph y = f(x) above each point
x on the x-axis.



Math 132-12 & 16 Fall 2003

Test I Review

Derivatives In this chapter we have learned several meanings of the deriv-
ative f ′(x) = df

dx
.

physical: The derivative is the instantaneous rate of change of f(x) with
respect to x, or how fast f(x) increases per unit increase in x. The units of
the derivative are (f(x)-units) per (x-units): for example, if f(x) is in km and
x is in hr, the derivative is in km/hr.

numerical: The rate of change is approximately the change in f(x) divided
by the change in x, over some small x-interval of length ∆x = h. The small
interval starts at x and ends at x + h, so the function starts at f(x) and ends
at f(x + h). Then we let the increment h tend to 0 (or to be as small as
possible given our data). In formulas:

f ′(x) =
df

dx
= lim

∆x→0

∆f

∆x
= lim

h→0

f(x + h) − f(x)

h
.

Note that in this limit, x is a constant while h → 0.

algebraic: If f(x) is given by a formula, we get a limit having the form 0
0

when you substitute h = 0. We can compute the value of this limit exactly
by algebraic simplifications which cancel the vanishing terms in the numerator
and denominator.

Example: Evaluate the derivative f ′(x) for f(x) = 1/x. In the following, x is
a constant number (the point at which we find the rate of change), while h is
an arbitrary increment, tending to zero.

Solution:

f ′(x) = lim
h→0

f(x + h) − f(x)

h
= lim

h→0

f(x + h) − f(x)

h

(∗) = lim
h→0

1
(x+h)

− 1
(x)

h
= lim

h→0

(
1

x + h
− 1

x

)
· 1

h

= lim
h→0

(
x

(x + h)x
− (x + h)

(x + h)x

)
· 1

h

= lim
h→0

(
x − (x + h)

(x + h)x

)
· 1

h
= lim

h→0

( −h

(x + h)x

)
· 1

h

= lim
h→0

−1

(x + h)x
=

−1

(x + 0)x
= − 1

x2
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You could check this numerically by plugging some particular x into (∗), say
x = −2, and then plugging in h = ±0.1, ±0.01, etc. into expression (∗), which
would yield numbers approaching −1/x2 = −0.25.

graphical: The derivative f ′(x) is the slope of the tangent line to the graph
y = f(x) at a point (x, f(x)), or the slope of the graph itself when you zoom
in close to this point.

Infinite Limits Another important type of limit has the form non-zero
0

when
you substitute the value of the variable.

Example:

lim
x→3−

1

(x − 3)2
= ??

Solution: Substitution gives 1
0
, so the one-sided limit will have an infinite

value. We must determine whether it tends to +∞ or −∞.
The notation x → 3− means that x approaches 3 from below: x < 3. Thus

x − 3 < 0 is a small negative number, and (x − 3)2 > 0 is a small positive
number. Finally, 1/(x − 3)2 is a large positive number, and the limit is +∞.
We could also substitute values like x = 2.99, 2.999, etc., to see which way the
limit is going.

Rate of Change. The following problem (from p. 16 of your book) illustrates
the physical, numerical and graphical meanings of the derivative applied to
real-world data.

Let f(x) measure the temperature (in ◦F) inside a wall, at a depth of x
inches. The indoor temperature (at x = 0) is 72◦; the outdoor temperature (at
x = 5) is 0◦. In between, the temperature gradually drops as it passes through
gypsum wallboard, fiberglass insulation, and wood sheathing. The function
is given (a) in the table below; (b) in the graph on p. 16 of your book. The
insulating quality of a material is measured by the rate of temperature drop:
the larger the rate, the better the insulator. We are interested in evaluating
the insulting quality of the three types of wall material.

problem: Find the approximate rate of change of temperature f(x) with
respect to x at x = 0.2 (inside the gypsum), x = 2.0 (fiberglass), and x = 4.5
(wood). Base your answers on (a) the table; then re-do them from (b) the
graph on p. 16.

Table of Values of f(x)

x 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
f(x) 69 69.5 68 64 61 58 55 52 48 45 42 39 35

x 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0
f(x) 32 29 26 22 19 16 13 10 8.5 7 5.5 4 2.5
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solution: a. Since the problem asks for the rate of change of f(x) (degrees of
temperature change per inch of wall), we are looking for derivatives: f ′(0.2),
f ′(2.0), f ′(4.5).

For example, to get the derivative

f ′(2.0) =
df

dx
∼= ∆f

∆x

for a small increment ∆x, let us take the smallest available ∆x = 0.2 and
compute ∆f

∆x
over the interval x = 2 to x = 2 + ∆x = 2.2. From the table, we

see that f(2.0) = 42, f(2.2) = 39, so

∆f

∆x
=

f(2.2) − f(2.0)

∆x
=

39 − 42

0.2
= −15.

We could also consider ∆x = −0.2, corresponding to the interval x = 1.8 to
x = 2.0 before our point. Then

∆f

∆x
=

f(1.8) − f(2.0)

∆x
=

45 − 42

−0.2
= −15.

Thus, our estimate is: f ′(2) ∼= −15.

b. Now look at the graph. Recall that the derivative f ′(2) is the slope of the
graph y = f(x) near the point (2, f(2)) = (2, 42). Close up, any smooth graph
looks like a line, and the derivative is the slope of that line.

In our case, a large part of the graph near x = 2 looks linear, and we need
to estimate the slope of this line. Taking the run ∆x = 2, we see that the drop
∆f from x = 1 to x = 3 is about 58 − 26 = 32◦ (i.e., a rise of −32◦). Thus,

f ′(2) = slope =
rise

run
∼= −32

2
= −16.

This is actually a more reliable answer than in part (a), because the graph
is clearly linear, and the round-off error is minimized if we take ∆x and ∆f
large.

conclusion: Computing these following the example of f ′(2.0) above, the
final answers should be roughly: f ′(0.2) ∼= −2.5◦F/in, f ′(2.0) ∼= 16◦F/in,
f ′(4.5) ∼= 7.5◦F/in. Thus, fiberglass is about twice as good an insulator as
wood, and five times as good as gypsum.
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