A *median* of a triangle is the line segment from a vertex to the midpoint of the opposite side.

PROPOSITION: In any triangle, the three medians intersect at a common point which is $\frac{2}{3}$ of the way along each median.

PROOF: We translate the proposition into the language of vector algebra. Let $\vec{u}, \vec{v}, \vec{w}$ be the vectors from the origin to the vertices of the triangle.

The vector from \vec{v} to \vec{w} is $\vec{w} - \vec{v}$, and the midpoint of the corresponding side is:

$$\vec{v} + \frac{1}{2}(\vec{w} - \vec{v}) = \frac{1}{2}\vec{v} + \frac{1}{2}\vec{w}.$$

The vector from \vec{u} to this midpoint is $\frac{1}{2}\vec{v} + \frac{1}{2}\vec{w} - \vec{u}$, and the median from \vec{u} to the midpoint is the parametrized line segment:

$$\vec{\ell}(t) = \vec{u} + t(\frac{1}{2}\vec{v} + \frac{1}{2}\vec{w} - \vec{u}) \quad \text{for} \quad 0 \le t \le 1.$$

(That is, the points of the segment are the endpoints of the vectors $\vec{\ell}(t)$, written in standard form from the origin.) The point $\frac{2}{3}$ of the way along this median is:

$$\begin{split} \vec{\ell}(\frac{2}{3}) &= \vec{u} + \frac{2}{3}(\frac{1}{2}\vec{v} + \frac{1}{2}\vec{w} - \vec{u}) \\ &= \vec{u} + \frac{1}{3}\vec{v} + \frac{1}{3}\vec{w} - \frac{2}{3}\vec{u} \\ &= (1 - \frac{2}{3})\vec{u} + \frac{1}{3}\vec{v} + \frac{1}{3}\vec{w} \\ &= \frac{1}{3}(\vec{u} + \vec{v} + \vec{w}), \end{split}$$

where we expand and factor using the distributive property of scalar multiplication over vector addition.

The same computation for the other two medians gives their $\frac{2}{3}$ points:

$$\vec{v} + \frac{2}{3} (\frac{1}{2}\vec{u} + \frac{1}{2}\vec{w} - \vec{v}) = \frac{1}{3} (\vec{u} + \vec{v} + \vec{w}),$$

$$\vec{w} + \frac{2}{3} (\frac{1}{2}\vec{u} + \frac{1}{2}\vec{v} - \vec{w}) = \frac{1}{3} (\vec{u} + \vec{v} + \vec{w}).$$

Thus, all three medians contain a common point, the $\frac{2}{3}$ -point along each. \square

Note: We call this common point the *centroid* of the triangle. The proof shows it is the vector average of $\vec{u}, \vec{v}, \vec{w}$.