Define a group by the set:

$$
G=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is a bijective function }\},
$$

and the operation $*$ as the composition of functions. That is, the group product of two functions is their composite function:

$$
f * g=f \circ g=h, \quad \text { where } h(x)=f(g(x)) \text {. }
$$

Show that this G with this operation satisfies the four group axioms. You may use facts about about functions that we have previously covered.
AXIOM 1. Closure: $\forall f, g \in G, f \circ g \in G$.
Explain briefly; no need for a detailed proof.

AXIOM 2. Associativity: $\forall f, g, h \in G,(f \circ g) \circ h=f \circ(g \circ h)$
Show this by checking: $((f \circ g) \circ h)(x)=(f \circ(g \circ h))(x)$ for all $x \in \mathbb{R}$.

AXIOM 3. Identity element: $\exists e \in G, \forall f \in G, f \circ e=e \circ f=f$.
What function $e: \mathbb{R} \rightarrow \mathbb{R}$ acts as the identity element? Why? Is it an element of G ?

AXIOM 4. Inverse element: $\forall f \in G, \exists g \in G, f \circ g=g \circ f=e$.
What function corresponds to the inverse element of f ? Is it an element of G ? Why?

Does the above group satisfy the following additional property? Prove your answer.
Commutativity: $\forall f, g \in G, f \circ g=g \circ f$?

