1. Let S be the set of students in a class. Suppose that the class wants to select a class president, vice president, and a secretary (with no one holding two positions).
(a) Model this situation with set \& list notation: define a set T whose elements represent all possible choices for the three positions.
(b) What is the cardinality of T if $|S|=3$: that is, how many ways to choose the three positions if there are only three students in the class? What is the cardinality of T if $|S|=4$ (four students in the class)?
2. (a) Let $S=\{a, b, c, d\}$ be a set with four elements. List the subsets of S that have cardinality 2 (that is, all two-element subsets). How many such subsets are there?
(b) Alice, Bob, Carol, and Dave all exchange handshakes (Alice \& Bob, Alice \& Carol, ..., Carol \& Dave). Model this situation formally. That is, consider the set/list data needed to represent one handshake, and define a set representing all the handshakes. How many handshakes occurred? How does this relate to part (a)?
(c) How does the relation between (a) and (b) generalize to sets with n elements? (Note: Next week we will learn the general formula for the number of possible handshakes amongst n people).
3. (a) For each of the sets S below, list all of the subsets (that is, write out the power-set of S). Do you notice a pattern to the number of subsets? (We will develop techniques to help you prove your guess.)
i. $S=\emptyset$
ii. $S=\{a\}$
iii. $S=\{a, b\}$
iv. $S=\{a, b, c\}$
(b) For each of the nonempty sets in (a), list all of the possible functions

$$
f: S \rightarrow\{0,1\}
$$

How many functions are there for each S ? Is the relation with (a) a coincidence? Hint: Write functions using the ordered pair definition in Supplement 9/4 p.3. For example, the function $f:\{a, b\} \rightarrow\{0,1\}$ defined by $f(a)=1, f(b)=0$ is written as: $f=\{(a, 1),(b, 0)\}$.
4. A combinatorial graph (not to be confused with the graph of a function) is a mathematical object to model real-world situations in which certain pairs of discrete objects are related or attached to each other.

In this picture, the objects are the vertices or nodes $1,2, \ldots, 5$; and $1 \& 2$ are attached, $1 \& 5$ are attached, etc., but $1 \& 3$ are not attached. We formalize this as a set of vertices $V=\{1,2,3,4,5\}$, and a set of edges E whose elements are unordered pairs of attached vertices: $e=\{v, w\}$. That is:

$$
E=\{\{1,2\},\{1,5\},\{2,3\},\{2,4\},\{2,5\},\{3,4\},\{4,5\}\} .
$$

In general, we define a graph G as any pair of sets (V, E) in which the elements of E are two-element subsets of $V: \quad e=\{v, w\}$ with $v, w \in V$.
(a) Suppose that we have five people - Alice, Bob, Carol, Dave, Eve. Alice knows everyone (and everyone knows Alice). Bob and Carol know each other. Dave and Eve know each other. Draw a graph that models this situation, and write its formal data (V, E).
(b) Think of substantially different real-world situations naturally modeled by a graph.

