Math 299

Homework 9/11

In Supplement 9/9, we defined the choose number, or binomial coefficient, $\binom{n}{k}$ to be the number of possible k-element subsets $S \subset [n]$, where $[n] = \{1, 2, ..., n\}$. For example, $\binom{4}{2} = 6$ counts the 2-element subsets $S \subseteq \{1, 2, 3, 4\}$, namely: $S = \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}$.

We can put these numbers into an array called Pascal's Triangle (in China, Yang Hui's Triangle; in Iran, Khayyam's Triangle):

We can compute the entries by the formula $\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!}$, but there is an easier way. It is a remarkable fact that each entry in the triangle is the sum of the two entries immediately above it (except for the edges $\binom{n}{0} = \binom{n}{n} = 1$). For example, the next row will be:

$$\binom{5}{0} = 1, \quad \binom{5}{1} = \binom{4}{0} + \binom{4}{1} = 5, \quad \binom{5}{2} = \binom{4}{1} + \binom{4}{2} = 10, \quad \binom{5}{3} = \binom{4}{2} + \binom{4}{3} = 10, \quad \dots$$

In general, the Recurrence Formula which generates the triangle is:

$$(*) \qquad \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Problem 1. Use the above recurrence to compute the $\binom{6}{k}$ and $\binom{7}{k}$ rows of the table.

Problem 2. Find the sum of each row: $\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}$, for $n = 0, 1, \dots, 7$. Guess a general formula for this sum.

Problem 3. Prove your formula from Prob. 2 by asking: what kind of objects are counted by the left side? Then look in Supplement 9/9 and apply one of the propositions.

Next we consider how to prove the Recurrence Formula (*) through the Bijection Principle: we need to write he left and right sides of the formula as the cardinalities (sizes) of some sets \mathcal{A} and \mathcal{B} .

- $\binom{n}{k} = |\mathcal{A}|$, where \mathcal{A} is the set of all k-element subsets of [n].
- $\binom{n-1}{k-1} = |\mathcal{B}_1|$, where \mathcal{B}_1 is the set of all (k-1)-element subsets of [n-1].
- $\binom{n-1}{k} = |\mathcal{B}_2|$, where \mathcal{B}_2 is the set of all k-element subsets of [n-1].
- $\binom{n-1}{k-1} + \binom{n-1}{k} = |\mathcal{B}_1| + |\mathcal{B}_2| = |\mathcal{B}_1 \cup \mathcal{B}_2|$, since B_1 and B_2 have no common elements.

Now we try to give a bijection $\phi : \mathcal{A} \to \mathcal{B}_1 \cup \mathcal{B}_2$: this will show that $|\mathcal{A}| = |\mathcal{B}_1| + |\mathcal{B}_2|$, which is precisely the recurrence formula $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.

We define the bijection ϕ by specifying the output of an element of \mathcal{A} , that is of k-element subsets $S \subset [n]$. Let $\phi(S) = S' = S \setminus \{n\}$, meaning we remove n from S if it is present, and leave S' = S otherwise. We thus produce $S' \in \mathcal{B}_1 \cup \mathcal{B}_2$, a subset of [n-1] with either k-1 or k elements.

$S \in \mathcal{A}$	$\{1, 2\}$	$\{1, 3\}$	$\{1, 4\}$	$\{2,3\}$	$\{2,4\}$	$\{3, 4\}$
$S' \in \mathcal{B}_1$			{1}		$\{2\}$	$\{3\}$
$\in \mathcal{B}_2$	$\{1, 2\}$	$\{1, 3\}$		$\{2, 3\}$		

For example, the bijection ϕ for $\binom{4}{2} = \binom{3}{1} + \binom{3}{2}$ is given in the table, where $S' = \phi(S)$:

Problem 4. Illustrate the mapping ϕ in the case of $\binom{5}{3} = \binom{4}{2} + \binom{4}{3}$. Make a table like the one above.

Problem 5. Formally define the inverse mapping $\psi : \mathcal{B}_1 \cup \mathcal{B}_2 \to \mathcal{A}$, which undoes ϕ . That is, given a subset $S' \subset [n-1]$ with either k-1 or k elements, define the corresponding k-element $S \subset [n]$. Define $S = \psi(S')$, with separate cases for $S' \in \mathcal{B}_1$ and $S' \in \mathcal{B}_2$.

You do not need to prove that your ψ is inverse to ϕ , but take a fairly large example of S, and verify that $\psi(\phi(S)) = S$; also take an example of S' and verify that and $\phi(\psi(S')) = S'$.