Problem 1. A rectangular plot of farmland will be bounded on one side by a river and on the other three sides by a fence. With 800 m of fence available, what shape of rectangle will enlcose the largest area?
Solution A.

$$
\begin{gathered}
\text { Area }=a b \\
2 a+b=800 \\
b=800-2 a \\
f(a)=a(800-2 a) \\
f^{\prime}(a)=800-4 a=0 \Longrightarrow a=200, b=400
\end{gathered}
$$

Solution B. (Improved with explanations)
Denote the length and width of the rectangular plot by a and b. The area is given by:

$$
\text { Area }=a b .
$$

Without loss of generality [why?], we can assume that the river runs along the width b of the rectangle, and the 800 m of fence runs along sides of length a, b, a; hence:

$$
2 a+b=800 .
$$

Solving the above equation for b :

$$
b=800-2 a \text {. }
$$

Then the area as a function of the length is:

$$
f(a)=a(800-2 a),
$$

where f has domain $[0,400]$, since a valid length has $a \geq 0$, and $b \geq 0$ whenever $a \leq 400$.
Recalling the method to find the absolute maximum of $f(a)$ in its domain $a \in[0,400]$:

1. Find the critical points in the domain, where the derivative $f^{\prime}(a)$ equals zero or is undefined. We have: $f^{\prime}(a)=800-4 a$, which is defined for all a, and $f^{\prime}(a)=0$ only for $a=200$.
2. Evaluate $f(a)$ at the critical points: $f(200)=(200)(400)=80000$.
3. Evaluate $f(a)$ at the endpoints of the domain: $f(0)=f(400)=0$.
4. The absolute maximum is the largest value $f(a)$ from steps 2 and 3: that is, $f(200)=$ 80000.

Thus, the largest area that can be enclosed is $80,000 \mathrm{~m}^{2}$, achieved when the plot has length $a=200 \mathrm{~m}$ and width $b=400 \mathrm{~m}$.

Problem 2. Prove the following:
theorem: Among all rectangles with a given fixed area, the one with the smallest perimeter is a square.

Proof A.

$$
\begin{gathered}
x y=A \\
y=\frac{A}{x} \\
f(x)=2 x+\frac{2 A}{x} \\
f^{\prime}(x)=2-\frac{2 A}{x^{2}}=0 \Longrightarrow x=\sqrt{A} \Longrightarrow y=\sqrt{A} \Longrightarrow \text { square }
\end{gathered}
$$

Proof B. Consider all rectangles having a fixed area A, and denote the length and width of such a rectangle by x and y. Then $x y=A$, and solving for y gives:

$$
\begin{equation*}
y=\frac{A}{x} \tag{1}
\end{equation*}
$$

[Does it make a difference whether we solve for x or for y ?] The perimeter of the rectangle is $P(x, y)=2 x+2 y$, and substituting from equation (1) expresses the perimeter as a function of the single variable x :

$$
f(x)=2 x+\frac{2 A}{x},
$$

whose domain is $x \in(0, \infty]$, since we must have the length $x>0$, and this also guarantees $y>0$.

To find the absolute minimum of f, we first look for critical points in the domain, where $f^{\prime}(x)$ is zero or undefined. We compute:

$$
f^{\prime}(x)=2-\frac{2 A}{x^{2}},
$$

which is defined for all x in the domain, and which equals zero only at $x=\sqrt{A}$. Since the interval is open, the endpoint values $f(0)$ and $f(\infty)$ are undefined, but $f(x)$ might still approach (though not achieve) minimum values near the endpoints. However, $\lim _{x \rightarrow 0^{+}} f(x)=$ ∞ and $\lim _{x \rightarrow \infty} f(x)=\infty$, meaning $f(x)$ gets arbitrarily large near these endpoints. Therefore, the minimum value can only be at the critical point $x=\sqrt{A}$.
[Another way to eliminate the endpoints is to show that $f^{\prime \prime}(x)>0$ on the whole domain, so that $f(x)$ is concave up, and $f^{\prime}(x)$ is increasing for all x. Since $f^{\prime}(x)=0$ for $x=\sqrt{A}$, this means $f(x)$ must be decreasing for $x<\sqrt{A}$, and increasing for $x>\sqrt{A}$, and hence that $x=\sqrt{A}$ is the unique minimum point.]

We conclude that the rectangle with minimum perimeter has length $x=\sqrt{A}$, which by equation (1) implies the width $y=A / \sqrt{A}=\sqrt{A}$. Since length equals width, the minimum rectangle is a square.

