Math 299Recitation 1Aug 29, 2013

PROBLEM 1. A rectangular plot of farmland will be bounded on one side by a river and on the other three sides by a fence. With 800m of fence available, what shape of rectangle will enlcose the largest area?

Solution A.

Area =
$$ab$$

 $2a + b = 800$
 $b = 800 - 2a$
 $f(a) = a(800 - 2a)$
 $f'(a) = 800 - 4a = 0 \implies a = 200, b = 400$

Denote the length and width of the rectangular plot by a and b. The area is given by:

Area
$$= ab$$
.

Without loss of generality [why?], we can assume that the river runs along the width b of the rectangle, and the 800m of fence runs along sides of length a, b, a; hence:

$$2a + b = 800.$$

Solving the above equation for *b*:

b = 800 - 2a.

Then the area as a function of the length is:

$$f(a) = a(800 - 2a),$$

- where f has domain [0, 400], since a valid length has $a \ge 0$, and $b \ge 0$ whenever $a \le 400$. Recalling the method to find the absolute maximum of f(a) in its domain $a \in [0, 400]$:
 - 1. Find the critical points in the domain, where the derivative f'(a) equals zero or is undefined. We have: f'(a) = 800 4a, which is defined for all a, and f'(a) = 0 only for a = 200.
 - 2. Evaluate f(a) at the critical points: f(200) = (200)(400) = 80000.
 - 3. Evaluate f(a) at the endpoints of the domain: f(0) = f(400) = 0.
 - 4. The absolute maximum is the largest value f(a) from steps 2 and 3: that is, f(200) = 80000.

Thus, the largest area that can be enclosed is 80,000m², achieved when the plot has length a = 200m and width b = 400m.

PROBLEM 2. Prove the following:

THEOREM: Among all rectangles with a given fixed area, the one with the smallest perimeter is a square.

Proof A.

$$\begin{aligned} xy &= A \\ y &= \frac{A}{x} \\ f(x) &= 2x + \frac{2A}{x} \\ f'(x) &= 2 - \frac{2A}{x^2} = 0 \implies x = \sqrt{A} \implies y = \sqrt{A} \implies \text{square} \end{aligned}$$

Proof B. Consider all rectangles having a fixed area A, and denote the length and width of such a rectangle by x and y. Then xy = A, and solving for y gives:

$$y = \frac{A}{x}.$$
 (1)

[Does it make a difference whether we solve for x or for y?] The perimeter of the rectangle is P(x, y) = 2x + 2y, and substituting from equation (1) expresses the perimeter as a function of the single variable x:

$$f(x) = 2x + \frac{2A}{x},$$

whose domain is $x \in (0, \infty]$, since we must have the length x > 0, and this also guarantees y > 0.

To find the absolute minimum of f, we first look for critical points in the domain, where f'(x) is zero or undefined. We compute:

$$f'(x) = 2 - \frac{2A}{x^2},$$

which is defined for all x in the domain, and which equals zero only at $x = \sqrt{A}$. Since the interval is open, the endpoint values f(0) and $f(\infty)$ are undefined, but f(x) might still approach (though not achieve) minimum values near the endpoints. However, $\lim_{x\to 0^+} f(x) = \infty$ and $\lim_{x\to\infty} f(x) = \infty$, meaning f(x) gets arbitrarily *large* near these endpoints. Therefore, the minimum value can only be at the critical point $x = \sqrt{A}$.

[Another way to eliminate the endpoints is to show that f''(x) > 0 on the whole domain, so that f(x) is concave up, and f'(x) is increasing for all x. Since f'(x) = 0 for $x = \sqrt{A}$, this means f(x) must be decreasing for $x < \sqrt{A}$, and increasing for $x > \sqrt{A}$, and hence that $x = \sqrt{A}$ is the unique minimum point.]

We conclude that the rectangle with minimum perimeter has length $x = \sqrt{A}$, which by equation (1) implies the width $y = A/\sqrt{A} = \sqrt{A}$. Since length equals width, the minimum rectangle is a square.