1. Let the real functions f and g be defined by:

$$
f(x)=\sqrt{x} \quad \text { and } \quad g(x)=1-x^{2}
$$

a. Find the largest domain for f so that $f \circ g$ is a real function? Write your answer using proper notation and briefly explain why the domain can't be larger. Ans: $f \circ g=\sqrt{1-x^{2}}$, domain $D=\{x \in \mathbb{R} \mid-1 \leq x \leq 1\}$.
b. Find a possible codomain for the function f.

Ans: Smallest possible is the image: $\operatorname{Im}(f)=f(D)=\{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$.
2. Consider the function $t: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}$ defined by $t(a, b)=(5 a+2 b, 3 a+b)$. Write a formula for the inverse function $s: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}$, and verify it is indeed an inverse. Can you conclude that t is injective or surjective?
Ans: To find the inverse, solve for $s(a, b)$ in $t(s(a, b))=(a, b)$. Denoting $s(a, b)=$ (c, d), we solve for (c, d) in $t(c, d)=(a, b)$; i.e. solve the simultaneous equations:

$$
\left\{\begin{array}{c}
5 c+2 d=a \\
3 c+d=b
\end{array}\right.
$$

This gives: $s(a, b)=(-a+2 b, 3 a-5 b)$.
Note: This is equivalent to solving the matrix equation:

$$
\left[\begin{array}{ll}
5 & 2 \\
3 & 1
\end{array}\right] \cdot\binom{c}{d}=\binom{a}{b}
$$

The inverse is an integer matrix because det $=-1$.
3. Let $j \leq m$ be natural numbers. Recall that $[m]=\{1,2, \ldots, m\}$, and $[m] \backslash\{j\}$ means $[m]$ with the element j removed. Consider the bijection $h:[m] \backslash\{j\} \longrightarrow$ [$m-1$] given by:

$$
h(k)= \begin{cases}k & \text { for } k<j \\ k-1 & \text { for } k>j\end{cases}
$$

Give a formula for the inverse function $g:[m-1] \rightarrow[m] \backslash\{j\}$.
Ans: $g(k)=k$ for $k<j$ and $g(k)=k+1$ for $k \geq j$
4. The natural numbers $\mathbb{N}=\{0,1,2, \ldots\}$ seem to be a smaller set than the integers $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$, though it is not clear what "smaller" means for infinte sets. In fact it is possible to find a bijective function $f: \mathbb{N} \rightarrow \mathbb{Z}$.

Problem: Find such a function f, and write it explicitly, either in cases or as a formula using the floor function \rfloor.

Ans: $f(k)=\frac{1}{2} k$ for k even, $f(k)=-\frac{1}{2}(k+1)$ for k odd. Or: $f(k)=(-1)^{k}\left\lfloor\frac{k+1}{2}\right\rfloor$.
5. Consider $A=\{1,2,3\}$ and $B=\{w, x, y, z\}$. Justify your answers by citing a previous result or by finding a pattern in the list of all possibilities.
a. How many injective functions are there from A to B ? Ans: (5)(4)(3) from Supp 9/9, Prop. 3(ii)
b. How many surjective functions are there from B to A ?

Ans: The function must take one pair in B to one element in A. First we choose the pair (6 choices), and thereafter we may regard the pair as one unit. Thus 3 units from B are in bijection with A, giving $3!=6$ choices. Final answer: $(6)(6)=36$.

