1. Let the real functions f and g be defined by:

$$
f(x)=\sqrt{x} \quad \text { and } \quad g(x)=1-x^{2}
$$

a. Find the largest domain for f so that $f \circ g$ is a real function? Write your answer using proper notation and briefly explain why the domain can't be larger.
b. Find a possible codomain for the function f.
2. Consider the function $t: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}$ defined by $t(a, b)=(5 a+2 b, 3 a+b)$. Write a formula for the inverse function $s: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}$, and verify it is indeed an inverse. Can you conclude that t is injective or surjective?
3. Let $j \leq m$ be natural numbers. Recall that $[m]=\{1,2, \ldots, m\}$, and $[m] \backslash\{j\}$ means $[m]$ with the element j removed. Consider the bijection $h:[m] \backslash\{j\} \longrightarrow$ [$m-1$] given by:

$$
h(k)= \begin{cases}k & \text { for } k<j \\ k-1 & \text { for } k>j\end{cases}
$$

Problem: Give a formula for the inverse function $g:[m-1] \rightarrow[m] \backslash\{j\}$.
4. The natural numbers $\mathbb{N}=\{0,1,2, \ldots\}$ seem to be a smaller set than the integers $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$, though it is not clear what "smaller" means for infinte sets. In fact it is possible to find a bijective function $f: \mathbb{N} \rightarrow \mathbb{Z}$.

Problem: Find such a function f, and write it explicitly, either in cases or as a formula using the floor function \rfloor.
5. Consider $A=\{1,2,3\}$ and $B=\{w, x, y, z\}$. Justify your answers by citing a previous result or by finding a pattern in the list of all possibilities.
a. How many injective functions are there from A to B ?
b. How many surjective functions are there from B to A ?

