Recall that a group is defined by data $(G, *)$, where G is a set and $*$ is a binary operation satisfying the four Group Axioms.

1. Our first example is the modular (clock) arithmetic $(G, *)=\left(\mathbb{Z}_{3},+\right)$. Here $G=$ $\mathbb{Z}_{3}=\{\overline{0}, \overline{1}, \overline{2}\}$, which represent the marks on a 3 -hour clock. For any integer n, we define the notation $\bar{n}=\overline{n+3}=\overline{n-3}$, so that $\overline{3}=\overline{0}, \overline{7}=\overline{1}, \overline{-1}=\overline{2}$ are all elements of \mathbb{Z}_{3}.

The operation is: $\bar{n}+\bar{m}=\overline{n+m}$, for example: $\overline{2}+\overline{2}=\overline{2+2}=\overline{4}=\overline{1}$. Thus, for any $\bar{n}, \bar{m} \in \mathbb{Z}_{3}$, we have $\bar{n}+\bar{m} \in \mathbb{Z}_{3}$, a closed operation, which is clearly associative. Its identity element is $\overline{0}$, and the inverse of \bar{n} is $\overline{-n}=\overline{3-n}$. For example, $\overline{1}+\overline{2}=\overline{3}=\overline{0}$, so $\overline{1}$ and $\overline{2}$ are inverses. Thus, $\left(\mathbb{Z}_{3},+\right)$ satisfies the Group Axioms.
a. Write the operation table of $\left(\mathbb{Z}_{3},+\right)$. For a general group $(G, *)$, this is a table where the rows correspond to $a \in G$, the columns to $b \in G$; and in the a-row, b-column, we write the product $a * b$. In our case:

+	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{0}$			$\overline{2}$
$\overline{1}$			
$\overline{2}$			

Here the entry in the upper right corner means $\overline{0}+\overline{2}=\overline{2}$.
b. How do the formulas $\overline{0}+\bar{n}=\bar{n}$ and $\bar{n}+\overline{0}=\bar{n}$ appear in the table?
c. How can you find the inverse of each element from the table?
d. Is this group commutative? That is, do we have $\bar{n}+\bar{m}=\bar{m}+\bar{n}$ for all $\bar{n}, \bar{m} \in \mathbb{Z}_{3}$? How can you tell from the table?
2. The symmetric group of a set S is $(G, *)=(\operatorname{Sym}(S), \circ)$, where:

$$
\operatorname{Sym}(S)=\{f: S \rightarrow S \text { bijective functions }\}
$$

and the operation \circ is composition of functions: $(f \circ g)(x)=f(g(x))$.
For this problem, let $S=[3]=\{1,2,3\}$. We can write functions $f:[3] \rightarrow[3]$ with the notation: $f=(f(1), f(2), f(3))$. For example $f=(3,1,2)$ means the function with $f(1)=3, \quad f(2)=1, \quad f(3)=2$, and $g=(2,1,3)$ means $g(1)=2, g(2)=1, \quad g(3)=3$.

To compute a composition like $f \circ g=(3,1,2) \circ(2,1,3)$, we find: $f(g(1))=f(2)=1$, $f(g(2))=f(1)=3, \quad f(g(3))=f(3)=2$, so $f \circ g=(1,3,2)$. That is:

$$
(3,1,2) \circ(2,1,3)=(1,3,2)
$$

With a bit of practice, you can compute this in one step, without writing $f(g(1))$, etc.
a. Write the operation table for this group, computing all the compositions in the 6 rows and columns.
b. Rewrite the table by replacing each triple (a, b, c) with a letter label:

$$
e=(1,2,3), r_{1}=(2,3,1), r_{2}=(3,1,2), s_{1}=(1,3,2), s_{2}=(3,2,1), s_{3}=(2,1,3)
$$

For example, the computation above can be rewritten as: $r_{2} \circ s_{3}=s_{1}$.
c. Again, use the table to find the inverse of each element.
d. Is this group commutative? See this immediately from the table.
e. We can picture the group elements by drawing $1,2,3$ as vertices of a triangle, and drawing an arrow from each vertex i to the vertex $f(i)$. We can think of f as moving the triangle to itself. For example, $r_{1}=(2,3,1)$ has an arrow from 1 to $r_{1}(1)=2$, etc., and looks like a $\frac{1}{3}$-rotation:

Draw a similar picture for each element of the group, and describe the resulting motion of the triangle. How can we picture the composition operation in terms of the triangle?

