Recall that a group is defined by data (G, *), where G is a set and * is a binary operation satisfying the four Group Axioms.

1. Our first example is the modular (clock) arithmetic $(G, *) = (\mathbb{Z}_3, +)$. Here $G = \mathbb{Z}_3 = \{\overline{0}, \overline{1}, \overline{2}\}$, which represent the marks on a 3-hour clock. For any integer n, we define the notation $\overline{n} = \overline{n+3} = \overline{n-3}$, so that $\overline{3} = \overline{0}$, $\overline{7} = \overline{1}$, $\overline{-1} = \overline{2}$ are all elements of \mathbb{Z}_3 .

The operation is: $\overline{n} + \overline{m} = \overline{n+m}$, for example: $\overline{2} + \overline{2} = \overline{2+2} = \overline{4} = \overline{1}$. Thus, for any $\overline{n}, \overline{m} \in \mathbb{Z}_3$, we have $\overline{n} + \overline{m} \in \mathbb{Z}_3$, a closed operation, which is clearly associative. Its identity element is $\overline{0}$, and the inverse of \overline{n} is $\overline{-n} = \overline{3-n}$. For example, $\overline{1} + \overline{2} = \overline{3} = \overline{0}$, so $\overline{1}$ and $\overline{2}$ are inverses. Thus, $(\mathbb{Z}_3, +)$ satisfies the Group Axioms.

a. Write the operation table of $(\mathbb{Z}_3, +)$. For a general group (G, *), this is a table where the rows correspond to $a \in G$, the columns to $b \in G$; and in the *a*-row, *b*-column, we write the product a * b. In our case:

+	$\overline{0}$	ī	$\overline{2}$
$\overline{0}$			$\overline{2}$
1			
$\overline{2}$			

Here the entry in the upper right corner means $\overline{0} + \overline{2} = \overline{2}$.

b. How do the formulas $\overline{0} + \overline{n} = \overline{n}$ and $\overline{n} + \overline{0} = \overline{n}$ appear in the table?

c. How can you find the inverse of each element from the table?

d. Is this group commutative? That is, do we have $\overline{n} + \overline{m} = \overline{m} + \overline{n}$ for all $\overline{n}, \overline{m} \in \mathbb{Z}_3$? How can you tell from the table?

2. The symmetric group of a set S is $(G, *) = (\text{Sym}(S), \circ)$, where:

 $Sym(S) = \{f : S \to S \text{ bijective functions}\},\$

and the operation \circ is composition of functions: $(f \circ g)(x) = f(g(x))$.

For this problem, let $S = [3] = \{1, 2, 3\}$. We can write functions $f : [3] \to [3]$ with the notation: f = (f(1), f(2), f(3)). For example f = (3, 1, 2) means the function with f(1) = 3, f(2) = 1, f(3) = 2, and g = (2, 1, 3) means g(1) = 2, g(2) = 1, g(3) = 3.

To compute a composition like $f \circ g = (3, 1, 2) \circ (2, 1, 3)$, we find: f(g(1)) = f(2) = 1, f(g(2)) = f(1) = 3, f(g(3)) = f(3) = 2, so $f \circ g = (1, 3, 2)$. That is:

$$(3, 1, 2) \circ (2, 1, 3) = (1, 3, 2).$$

With a bit of practice, you can compute this in one step, without writing f(g(1)), etc.

a. Write the operation table for this group, computing all the compositions in the 6 rows and columns.

b. Rewrite the table by replacing each triple (a, b, c) with a letter label:

 $e = (1, 2, 3), r_1 = (2, 3, 1), r_2 = (3, 1, 2), s_1 = (1, 3, 2), s_2 = (3, 2, 1), s_3 = (2, 1, 3).$

For example, the computation above can be rewritten as: $r_2 \circ s_3 = s_1$.

- c. Again, use the table to find the inverse of each element.
- d. Is this group commutative? See this immediately from the table.

e. We can picture the group elements by drawing 1,2,3 as vertices of a triangle, and drawing an arrow from each vertex i to the vertex f(i). We can think of f as moving the triangle to itself. For example, $r_1 = (2,3,1)$ has an arrow from 1 to $r_1(1) = 2$, etc., and looks like a $\frac{1}{3}$ -rotation:

Draw a similar picture for each element of the group, and describe the resulting motion of the triangle. How can we picture the composition operation in terms of the triangle?