In Number Theory, we work within the axiomatic system of natural numbers:

$$
\mathbb{N}=\{0,1,2,3, \ldots\} \text { with operations }+, \times, \text { and inequality }<,
$$

referring as little as possible to the larger number systems that contain \mathbb{N} such as the rationals (fractions) \mathbb{Q} and the reals \mathbb{R}.

We will assume all specific arithmetic facts such as $2(26+45)=142 ; 9^{2}=(9)(9)=81$; and $0<1<2<\cdots$. We also assume the common laws of algebra, most of which are axioms for a group with the + or \times operation. For any $a, b, c \in \mathbb{N}$, we have:

1. Closure: $a+b \in \mathbb{N} \quad 1^{\prime}$. Closure: $a b \in \mathbb{N}$
2. Assoiciativity: $(a+b)+c=a+(b+c) \quad 2^{\prime}$. Assoiciativity: $(a b) c=a(b c)$
3. Identity element: $a+0=a=0+a \quad 3$. Identity element: $1 a=a=a 1$
4. Inverse: $\forall a, \exists b: a+b=0 \quad 4^{\prime}$. Inverse: $\forall a \neq 0, \exists b: a b=1$
5. Commutativity: $a+b=b+a \quad$ 5'. Commutativity: $a b=b a$ 6. Distributivity: $a(b+c)=a b+a c$

Note that additive and multiplicative inverses do not exist within \mathbb{N} because $-a$ and $1 / a$ are generally not elements of \mathbb{N}.

We also have the common properties of inequality. We define $a>b$ to mean $b<a$. For any $a, b, c \in \mathbb{N}$, we have:
7. Trichotomy: Exactly one of the following is true: $a<b, a=b, a>b$.
8. Compatibility of $<$ with + : If $a<b$, then $a+c<b+c$.
9. Compatibility of $<$ with \times : If $a<b$ and $c>0$, then $a c<b c$.

Finally, we state the Induction Property: If $P(n)$ is any proposition depending on the integer n, then:

If $P(0)$ is true, and $\forall n, P(n) \Rightarrow P(n+1)$; then $P(n)$ is true for all n
This is equivalent to the Complete Induction Property:
If $P(0)$ is true, and $\forall n,(P(0), P(1), \ldots, P(n)) \Rightarrow P(n+1)$; then $P(n)$ is true for all n
We give a few examples of elementary propositions proved from these axioms.
Proposition 1. Cancellation: If $a+c=b+c$, then $a=b$.
Proof. We prove the contrapositive. Suppose $a \neq b$. Then by (7), we have either: $a<b$, so that $a+c<b+c$ by (8); or $b<a$ and $b+c<a+c$ by (8). In either case, we have $a+c \neq b+c$ by (7), which is the contrapositive conclusion.
Note: We could have added $-c$ to both sides of $a+c<b+c$, but then we would use negative numbers, which are not in \mathbb{N}.
Proposition 2. Zero Property: $0 a=0$.
Proof. We have: $\quad 0+0 a=0 a \quad$ by (3)
$=(0+0) a$ by (3)
$=0 a+0 a$ by (6)
Thus by Cancellation (Prop. 1), we have: $0=0 a$ as desired.
proposition 3. Factors of 1: If $1=a b$, then $a=b=1$.
Proof. We prove the contrapositive. Suppose $a \neq 1$ or $b \neq 1$. Case 1: If $a=0$ or $b=0$ then by the Zero Property, $a b=0<1$. Case 2: If $a>1$ and $b=1$, then $a b=a>1$, and similarly if $a=1$ and $b>1$. Case 3: If $a, b>1$, then $a b>(1)(1)=1$ by (9) and (3^{\prime}). In any case, $a b \neq 1$, which is the contrapositive conclusion.

