Numbers modulo \mathbf{n}. We have previously seen examples of clock arithmetic, an algebraic system with only finitely many "numbers." In this lecture, we make a formal analysis.
definition: Fix a positive integer n, the modulus, and let $a, b \in \mathbb{Z}$. We say a is equivalent to b modulo n, in symbols $a \equiv b(\bmod n)$, to mean that $n \mid(a-b)$.

EXAMPLE: A standard clock with $n=12$ hours has hour marks at $1,2, \ldots, 11,12$ o'clock. The time 13 hours after noon is 1 o'clock, which corresponds to $13 \equiv 1(\bmod 12)$. Similarly, 11 hours before noon is also 1 o'clock, since $-11 \equiv 1(\bmod 12)$; and 0 hours (noon itself) is 12 o'clock, since $0 \equiv 12(\bmod 12)$. Note that we consider only whole number hours, never fractions of an hour.
For a fixed modulus n, the relation \equiv has the properties of an equivalence relation on the set of integers. For any $a, b, c \in \mathbb{Z}$, we can show:

- Reflexive: $a \equiv a$
- Symmetric: If $a \equiv b$, then $b \equiv a$.
- Transitive: If $a \equiv b$ and $b \equiv c$, then $a \equiv c$

Each element $a \in \mathbb{Z}$ has its equivalence class \bar{a}, the set of all elements equivalent to it:

$$
\bar{a}=\{b \in \mathbb{Z} \mid b \equiv a\} .
$$

Note: Some authors denote the equivalence class as $[a]$.
In the clock example with $n=12$, each class consists of all the hours before or after noon which give the same clock-time:

$$
\begin{aligned}
\overline{0}= & \{\ldots,-12,0,12,24, \ldots\} \\
\overline{1}= & \{\ldots,-11,1,13,25, \ldots\} \\
\overline{2}= & \{\ldots,-10,2,14,26, \ldots\} \\
& \vdots \\
\overline{11}= & \{\ldots,-1,11,23,35, \ldots\}
\end{aligned}
$$

Note that the next class $\overline{12}=\{\ldots,-12,0,12,24,36, \ldots\}$ is actually the same set as $\overline{0}$: that is, $\overline{12}=\overline{0}$, since $12 \equiv 0(\bmod 12)$. Similarly, $\overline{13}=\overline{-11}=\overline{1}$, etc. These classes have no common elements, and form a partition of the set \mathbb{Z} :

$$
\mathbb{Z}=\overline{0} \cup \overline{1} \cup \overline{2} \cup \cdots \cup \overline{11} .
$$

Lemma: For fixed n, the following conditions are logically equivalent. For any $a, a^{\prime} \in \mathbb{Z}$:
(i) The numbers are equivalent modulo $n: a \equiv a^{\prime}(\bmod n)$.
(ii) The numbers have the same equivalence class modulo $n: \bar{a}=\overline{a^{\prime}}$.
(iii) The numbers have the same remainder when divided by n :

$$
a=q n+r \text { and } a^{\prime}=q^{\prime} n+r \text { for } 0 \leq r<n .
$$

DEFINITION: We write $\mathbb{Z}_{n}=\{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1}\}$, the set of all equivalence classes modulo n.

Modular operations. We would like to define addtion and multiplication operations on the classes in \mathbb{Z}_{n} by adding or multiplying the integers in each class. However, there is a danger of ambiguity: we do not know which element in each class to add or multiply.

For the example of $n=12$, we can try to compute in \mathbb{Z}_{12} as follows:

$$
\overline{3}+\overline{11}=\overline{14}=\overline{2}, \quad \overline{3} \cdot \overline{11}=\overline{33}=\overline{9},
$$

since $3+11=14 \equiv 2$ and $3 \cdot 11=33 \equiv 9(\bmod 12)$. Now, we could also take the alternative forms $\overline{3}=\overline{27}$ and $\overline{11}=\overline{-1}$, and do the same computation with these:

$$
\overline{27}+\overline{-1}=\overline{26}=\overline{2}, \quad \overline{27} \cdot \overline{-1}=\overline{-27}=\overline{9},
$$

since $27+(-1)=26 \equiv 2$ and $27 \cdot(-1)=-27 \equiv 9(\bmod 12)$. The answers came out the same, but why? In fact, this will always happen:
proposition: Fix a modulus n. For $a, a^{\prime}, b, b^{\prime} \in \mathbb{Z}$, suppose $a \equiv a^{\prime}$ and $b \equiv b^{\prime}$. Then:

$$
a+b \equiv a^{\prime}+b^{\prime} \quad \text { and } \quad a b \equiv a^{\prime} b^{\prime} .
$$

Proof. The hypothesis $a \equiv a^{\prime}$ and $b \equiv b^{\prime}$ means $n \mid\left(a-a^{\prime}\right)$ and $n \mid\left(b-b^{\prime}\right)$. Then:

$$
n \mid\left(a-a^{\prime}\right)+\left(b-b^{\prime}\right)=\left(a+a^{\prime}\right)-\left(b+b^{\prime}\right),
$$

so by definition $a+b \equiv a^{\prime}+b^{\prime}$. Also, n divides the integer combination:

$$
\left(a-a^{\prime}\right) b+\left(b-b^{\prime}\right) a^{\prime}=a b-a^{\prime} b+b a^{\prime}-b^{\prime} a^{\prime}=a b-a^{\prime} b^{\prime}
$$

That is, $n \mid\left(a b-a^{\prime} b^{\prime}\right)$, so by definition $a b \equiv a^{\prime} b^{\prime}$. Q.E.D.
This means that we can unambiguously add and multiply equivalence classes.
Definiton: For $\bar{a}, \bar{b} \in \mathbb{Z}_{n}$, define the sum $\bar{a}+\bar{b}$ to be $\overline{a+b}$, the class of the integer sum $a+b$. Define the product $\bar{a} \cdot \bar{b}$ to be $\overline{a b}$, the class of the integer product $a b$.
The proposition guarantees that if $\bar{a}=\overline{a^{\prime}}$ and $\bar{b}=\overline{b^{\prime}}$, then $\overline{a+b}$ is the same class as $\overline{a^{\prime}+b^{\prime}}$, and the same for multiplication. The sum or product is specified as a unique class, and we say the operations are well-defined.

Properties of modular arithmetic. The addtion and multiplication on \mathbb{Z}_{n} satisfy most of the usual group properties familiar from the real numbers. They are easily shown to be closed, associative, commutative, and distributive. Also $\overline{0}$ is the additive identity, and $\overline{-a}$ is the additive inverse of \bar{a}. Finally, $\overline{1}$ is the multiplicative identity.

The only group axiom which is not clear for \mathbb{Z}_{n} is multiplicative inverses: any $\bar{a} \in \mathbb{Z}_{n}$ with $\bar{a} \neq \overline{0}$ should have some $\bar{b} \in \mathbb{Z}_{n}$ with $\bar{a} \cdot \bar{b}=\overline{1}$. (We denote such \bar{b} by \bar{a}^{-1}.) Note that we cannot just take \bar{b} to be $\overline{1 / a}$ or $\frac{\overline{1}}{a}$, because we do not allow fractional modular numbers in \mathbb{Z}_{n}. Rather, we must find an integer $b \in \mathbb{Z}$ with $\bar{a} \cdot \bar{b}=\overline{1}$, meaning $a b \equiv 1(\bmod n)$. This means $n \mid a b-1$, or $a b-1=n k$ for some $k \in \mathbb{Z}$. If we rewrite this as $a(b)+n(-k)=1$, we recognize this as a familiar problem: find an integer solution $(x, y)=(b,-k)$ to the equation:

$$
a x+n y=1, \quad x, y \in \mathbb{Z}
$$

Using the Euclidean Algorithm, we can find a solution provided $\operatorname{gcd}(a, n)=1$, but not otherwise. In other words, $\bar{b}=\bar{a}^{-1}$ exists if and only if a is relatively prime to n.

For the example of \mathbb{Z}_{12}, we can find $\overline{5}^{-1}$ by solving $5 x+12 y=1$. The Euclidean Algorithm gives $5(5)-2(12)=1$, or $5(5)+12(-2)=1$, so that $(b, k)=(x,-y)=(5,2)$. That is, $b=5$, so $\overline{5}^{-1}=\bar{b}=\overline{5}$, and indeed: $\overline{5} \cdot \overline{5}=\overline{25}=\overline{1}$. Thus, $\overline{5} \in \mathbb{Z}_{12}$ is analogous to $a=-1 \in \mathbb{R}$, which has $a^{2}=1$ and hence $a^{-1}=a$.

On the other hand, if we want $\overline{3}^{-1} \in \mathbb{Z}_{12}$, we would have to solve $3 x+12 y=1$. This is impossible since the left side is divisible by $\operatorname{gcd}(3,12)=3$, but the right side 1 is not divisible by 3 .

There is one case in which every non-zero element $\bar{a} \in \mathbb{Z}_{n}$ has an inverse $\bar{a}^{-1}=\bar{b} \in \mathbb{Z}_{n}$:
PROPOSITION: If $n=p$ is prime, then the non-zero classes $\mathbb{Z}_{p} \backslash\{\overline{0}\}$ with the multiplication operation form a commutative group.
Proof. As noted above, the only non-obvious condition is the existence of inverses. If $\bar{a} \neq \overline{0}$, then $a \not \equiv 0(\bmod p)$, meaning $p \nmid a$. Since p is prime, this implies $\operatorname{gcd}(a, p)=1$, and the Euclidean algorithm gives integers $x, y \in \mathbb{Z}$ with $a x+p y=1$. Then $a x-1=-p y$, so $a x \equiv 1(\bmod p)$, so $\bar{a} \cdot \bar{x}=\overline{1}$, and $\bar{a}^{-1}=\bar{x} \in \mathbb{Z}_{p}$. Q.E.D.

For example, for the prime modulus $n=p=11$, we can check that:

$$
\overline{1}=\overline{1} \cdot \overline{1}=\overline{2} \cdot \overline{6}=\overline{3} \cdot \overline{4}=\overline{5} \cdot \overline{9}=\overline{7} \cdot \overline{8}=\overline{10} \cdot \overline{10}
$$

so every non-zero $\bar{a} \in \mathbb{Z}_{11}$ has a multiplicative inverse.
Modular algebra. Since \mathbb{Z}_{p} (for p a prime) obeys all the usual axioms of addition and multiplication, almost everything we know about algebra carries over to \mathbb{Z}_{p}, provided we remember that $\bar{p}=\overline{0}$.

For example, the quadratic formula gives the solutions to the equation $a x^{2}+b x+c=0$:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

Now, if we want to solve an equation like:

$$
x^{2}+\overline{2} x+\overline{3}=0 \quad \text { for } \quad x \in \mathbb{Z}_{11},
$$

we apply the quadratic formula to the number system \mathbb{Z}_{11}. We need the square root of $b^{2}-4 a c=\overline{-8}=\overline{3}$, which by definition is some $y \in \mathbb{Z}_{11}$ with $y^{2}=\overline{3}$. By trial and error we find $\overline{5}^{2}=\overline{25}=\overline{3}$, so we take $y= \pm \overline{5}$. Also, dividing by $2 a=\overline{2}$ means multiplying by $\overline{2}^{-1}=\overline{6}$. Thus we get:

$$
x=(-b \pm y)(2 a)^{-1}=(-\overline{2} \pm \overline{5})(\overline{6})=\overline{18}, \overline{-42}=\overline{7}, \overline{2} .
$$

Check: for $x=\overline{7}$, we have: $(\overline{7})^{2}+\overline{2}(\overline{7})+\overline{3}=\overline{66}=\overline{0}$, and similarly for $x=\overline{2}$.

Public-key cryptography. The coding methods used in internet security have one basic requirement: a trap-door function, namely a bijection $f: S \rightarrow S$ on some finite set S, such that f is publicly known and efficiently computable, but its inverse function is not practically computable without knowing a secret number, the so-called private key. That is, anyone can compute $f(a)=b$, but given only the function f and output b, no one can recover the input a with a reasonable amount of computing power, unless they have access to the private key number.

Public-key cryptography (conceived by Diffie and Hellmann in 1976) is a paradigm for secret communication over insecure channels. Everyone has a personal trap-door function f, which they reveal publicly; but they keep their private key d a secret. The sender puts a message into the form of a number $a \in S$, encodes it as $b=f(a)$ using the recipient's public function f, then transmits the encoded message b along an insecure connection to the recipient, who recovers the message a with her private key d. However, an attacker who intercepts the encoded message b will be unable to recover a, not knowing the private key. (The image is that the message a falls through the trap-door f and becomes $b=f(a)$; then it cannot climb out without the rope d.)

A baby example of a trap-door function is multiplication in \mathbb{Z}_{p} for some large prime p. Fix some value $\bar{c} \in \mathbb{Z}_{p}$, and take $f(x)=\bar{c} x$ for $x \in \mathbb{Z}_{p}$. Given an output $\bar{b}=f(\bar{a})=\overline{c a}$, to recover \bar{a} we would need to perform the inverse of multiplication by \bar{c}, i.e. multiplication by $\bar{d}=\bar{c}^{-1}$. If we did not know the Euclidean Algorithm, it would be difficult to find \bar{d}, and thus not practical to recover $\bar{a}=\overline{d b}$. We could then take \bar{d} as the private key, and have a good trap-door function: no one could undo $f(x)$ unless they knew the secret value $\bar{d}=\bar{c}^{-1}$.

However, we do know the Euclidean algorithm, so we need a better trap-door function. The one used by the ubiquitous RSA coding method is not multiplication, but exponentiation in \mathbb{Z}_{n}. For appropriate positive integers n and c, we define the function $f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ by $f(x)=x^{c}$. The inverse function is very difficult to compute, even though everyone knows n and c. In fact, it is possible to find certain n and pairs (c, d) such that, for any output $\bar{b}=f(\bar{a})=\bar{a}^{c}$, we recover the input as $\bar{a}=\bar{b}^{d}$. We then make public the function f, but keep d as the private key.

Such pairs (c, d) are found by analyzing the multiplicative structure of \mathbb{Z}_{n}, where the modulus is a product of two large primes: $n=p q$ with p, q prime. We say $\bar{a} \in \mathbb{Z}_{n}$ is invertible if there exists an inverse \bar{a}^{-1}, i.e. if $\operatorname{gcd}(a, n)=1$. The set of invertible classes is denoted \mathbb{Z}_{n}^{\times}, and it forms a multiplicative group. The size of this group, the number of invertible elements, is $(p-1)(q-1)$. (Try to prove this.) Euler's Theorem says that, for any $\bar{a} \in \mathbb{Z}_{n}^{\times}$, we have $\bar{a}^{(p-1)(q-1)}=\overline{1}$. Now we use the Euclidean Algorithm to compute an inverse pair $c d \equiv 1(\bmod (p-1)(q-1))$, so that $c d=1+k(p-1)(q-1)$. Now we define:

$$
f: \mathbb{Z}_{n}^{\times} \rightarrow \mathbb{Z}_{n}^{\times}, \quad f(x)=x^{c} .
$$

We choose our message-numbers to be $\bar{a} \in \mathbb{Z}_{n}^{\times}$, and $\bar{b}=f(\bar{a})=\bar{a}^{c}$ can be reversed by:

$$
\bar{b}^{d}=\bar{a}^{c d}=\bar{a}^{1+k(p-1)(q-1)}=\bar{a} \overline{1}^{k}=\bar{a},
$$

and we decode the message \bar{a}. However, an attacker who knows only $n=p q$ and c would not be able to find d, since that requires knowing $(p-1)(q-1)=n-p-q+1$, which requires finding the factors p, q. But there is no known practical factoring algorithm for very large n.

Problems

1. Prove that the relation \equiv modulo n has the properties stated on p. 1: reflexive, symmetric, and transitive.
2. The Lemma on p. 1 asserts that the three conditions (i), (ii), (iii) are all logically equivalent. A complete proof requires several independent parts.
a. Prove (i) \Rightarrow (ii). That is, if $a \equiv a^{\prime}(\bmod n)$, then the equivalence classes \bar{a} and $\overline{a^{\prime}}$ are the same set. Hint: You do not need to consider the definition of $a \equiv b$ or mess with divisibility: just use the basic properties of \equiv in part (a) to show that $b \in \bar{a} \Longleftrightarrow b \in \overline{a^{\prime}}$.
b. Prove (ii) \Rightarrow (i). That is, if $\bar{a}=\overline{a^{\prime}}$ are the same set, then $a \equiv a^{\prime}(\bmod n)$. Hint: Again, this follows immediately from the definiton of \bar{a}, without worrying about divisibility.
c. Prove $(\mathrm{i}) \Rightarrow(\mathrm{iii}):$ that is, if $a \equiv a^{\prime}(\bmod n)$, then a and a^{\prime} have the same remainder when divided by n. Hint: By the Division Lemma, we can always write $a=q n+r$ and $a^{\prime}=q^{\prime} n+r^{\prime}$, and you must show that $r=r^{\prime}$.
d. Prove (iii) \Rightarrow (i): that is, if a and a^{\prime} have the same remainder $\bmod n$, then $a \equiv a^{\prime}$.
3. Consider the modular number system \mathbb{Z}_{9}
a. Write the complete 9×9 addition and mulitiplication tables. For example, we have $\overline{6}+\overline{7}=\overline{13}=\overline{4}$, so in the addtion table, the entry in the $\overline{6}$ row and $\overline{7}$ column should be $\overline{4}$. Hint: For simplicity, don't write the lines over the numbers in the table: just keep in mind that all the entries are classes in \mathbb{Z}_{9}, so that everything is modulo 9 .
b. Looking at the multiplication table, determine which elements $\bar{a} \in \mathbb{Z}_{9}$ have inverses \bar{a}^{-1}. Explain how this matches the general rule for when \bar{a}^{-1} exists at the top of p. 3 .
c. Determine which elements have square roots. That is, for which $\bar{a} \in \mathbb{Z}_{9}$ is there some $\bar{b} \in \mathbb{Z}_{9}$ with $\bar{b}^{2}=\bar{a}$?
d. Use the quadratic formula to solve the equation $x^{2}+\overline{3} x+\overline{5}=\overline{0}$ for $x \in \mathbb{Z}_{9}$.
4. I have encoded a secret message by the following method. Each letter of my message is represented by a number using the obvious code $\mathrm{A}=1, \mathrm{~B}=2, \ldots, \mathrm{Z}=26$, and also: comma $=27$, period $=28$, exclamation point $=29$, question mark $=30$, space $=31$.

Next, I encrypt each number by the function $f: \mathbb{Z}_{31} \rightarrow \mathbb{Z}_{31}$ with $f(x)=\overline{7} x$. For example, the letter T is the 20 th letter of the alphabet, and $f(\overline{20})=\overline{7} \cdot \overline{20}=\overline{140}=\overline{16}$, so the encrypted number is 16 .

The encrypted numbers of my message are:

$$
4,23,22,4,2,17
$$

Break this code and find the original message. That is, for each encrypted number $b=$ $f(a)$, reverse the function f to find the original a, and look up its letter. Hint: What is the reverse operation of multiplying by $\overline{7}$ in \mathbb{Z}_{31} ?

