Math 299 Supplement: Real Number Axioms Nov 18, 2013

Algebra Axioms. In Real Analysis, we work within the axiomatic system of real numbers: the set \mathbb{R} along with the addition and multiplication operations $+, \cdot,$ and the inequality relation <. We do not need to list or describe the elements of \mathbb{R} directly; rather, anything we want to know about \mathbb{R} will follow from Axioms 1–10.

We start with the axioms of the addition and multiplication operations, which include the commutative group axioms. For any $a, b, c \in \mathbb{R}$, we have:

- 1. Closure: $a + b \in \mathbb{R}$ 1'. Closure: $ab \in \mathbb{R}$ 2. Associativity: (a + b) + c = a + (b + c)2'. Associativity: (ab)c = a(bc)3. Identity element: $\exists 0, a + 0 = a$ 3'. Identity element: $\exists 1 \neq 0, a1 = a$ 4. Inverse: $\forall a, \exists b, a + b = 0.$ 4'. Inverse: $\forall a \neq 0, \exists b, ab = 1$
- Denote b = -a5. Commutativity: a + b = b + a5. Commutativity: a = b + a5. Commutativity: a = b + a

6. Distributivity: a(b+c) = ab + ac

We define new operations in terms of the basic ones: subtraction a-b means a+(-b); and division a/b or $\frac{a}{b}$ means $a \cdot b^{-1}$.

We also have the axioms of inequality. For any $a, b, c, d \in \mathbb{R}$, we have:

- 7. Trichotomy: Exactly one of the following is true: a < b, a = b, a > b.
- 8. Compatibility of < with +: If a < b and c < d, then a + c < b + d.
- 9. Compatibility of < with \cdot : If a < b and 0 < c, then ac < bc.

We define a > b to mean b < a, and $a \le b$ to mean a < b or a = b.

Completeness. The final axiom gives a precise meaning to the idea that the real numbers have no holes or gaps, but rather form a continuum.

First, some definitions. We say a number $b \in \mathbb{R}$ is an *upper bound* for a set $S \subset \mathbb{R}$ whenever $x \leq b$ for all $x \in S$. Furthermore, ℓ is the *least upper bound* (or *supremum*) of S means $\ell \leq b$ for every upper bound b of S. We denote this as $\ell = \text{lub}(S)$ or sup(S). Intuitively, the least upper bound is the "rightmost edge" of S on the real number line.

EXAMPLES: (i) Let $S = \mathbb{N} \subset \mathbb{R}$. Then S is an unbounded set having *no* upper bounds, and hence no least upper bound.

(ii) Let $S = \{0.9, 0.99, 0.999, \ldots\}$. Then every number $b \ge 1$ is an upper bound of S, and $\ell = \sup(S) = 1$ is the least upper bound. It makes no difference whether 1 is in the set or not: $S \cup \{1\}$ has the same upper bounds as S, and $\sup(S \cup \{1\}) = 1$.

(iii) Let $S = \{x \in \mathbb{R} \mid x^2 < 2\}$. Some upper bounds for S are upper approximations to $\sqrt{2}$, like $a = 1.5, 1.42, 1.415, \ldots$ The least upper bound is $\sup(S) = \sqrt{2}$ itself, which is a way of producing this irrational number without assuming it exists.

10. Axiom of Completeness: Any set $S \subset \mathbb{R}$ which has an upper bound, also has a least upper bound in the reals: $\sup(S) \in \mathbb{R}$.

Note that this axiom fails for the rational numbers \mathbb{Q} , and this is their main difference from the real numbers. For example, the set in Example (iii) above has upper bounds in \mathbb{R} and in \mathbb{Q} , but it has a least upper bound *only* in \mathbb{R} : in the rationals \mathbb{Q} , there is a "hole" where $\sup(S) = \sqrt{2}$ would be, since $\sqrt{2}$ is *not* rational. Algebra Propositions. All the usual facts of algebra (including inequalities) can be deduced from Axioms 1–9. Throughout, we implicitly use Axioms 2, 2' to write expressions like a + b + c instead of (a + b) + c, and *abc* instead of (ab)c.

PROPOSITION 1 (Multiplication by zero): 0a = 0.

Proof. By Axioms 3 and 6, we have: 0a = (0+0)a = 0a + 0a. Adding -0a to the left and right sides of this equality, we get: 0a - 0a = 0a + 0a - 0a, which we can simplify by Axioms 4 and 3 to 0 = 0a as desired.

PROPOSITION 2 (Multiplication with signs):

(i) -(-a) = a, (ii) (-a)b = -(ab), (iii) (-a)(-b) = ab.

Proof. (i) By Axiom 4, 0 = (-a) - (-a). Adding *a* to both sides gives: a = a + (-a) - (-a) = 0 - (-a) = -(-a).

(ii) We have: (-a)b + ab = (-a + a)b = 0b = 0 by Prop. 1. Switching the sides: 0 = (-a)b + ab, and adding -(ab) to both sides: -(ab) = (-a)b + ab - (ab) = (-a)b + 0 = (-a)b.

(iii) Applying (ii) twice, we have: (-a)(-b) = -(a(-b)) = -((-b)a) = -(-(ba)) = -(-(ab)). Thus (-a)(-b) = -(-(ab)) = ab by (i).

PROPOSITION 3. If a < b, then -b < -a.

Proof. Let a < b. Using Axiom 8, we add -a-b to both sides, getting: a + (-a-b) < b + (-a-b). Simplifying the left and right sides by Axioms 2, 3, 4, 5 gives -b < -a.

PROPOSITION 4. 0 < 1.

Proof. Surprisingly, this is not immediate. Suppose for a contradiction that $0 \neq 1$. By Axiom 7, this means $0 \geq 1$, but Axiom 3' says $0 \neq 1$. Thus 0 > 1, and by Prop. 3, 0 < -1, so by Axiom 9, 0(-1) < (-1)(-1). By Prop. 1, 0(-1) = 0, and by Prop. 2, (-1)(-1) = (1)(1) = 1, which means 0 < 1. But we already saw 0 > 1, so this contradicts the uniqueness part of Axiom 7. This contradiction shows 0 < 1.

PROPOSITION 5 (Transitivity of <): If a < b and b < c, then a < c.

Proof. Suppose a < b < c. By Axiom 8, we can subtract a from the first inequality to get 0 < b - a, and subtract b from the second inequality to get 0 < c - b. Adding these two inequalities: 0 < (b - a) + (c - b) = c - a. Adding a to the inequality gives a < (c - a) + a = c.

DEFINITION: |x| = x if $x \ge 0$, and |x| = -x if x < 0.

PROPOSITION 6: For $a, b \in \mathbb{R}$: (i) |ab| = |a| |b|. (ii) $|a+b| \le |a| + |b|$; (iii) (Triangle inequality) For $x, y, z \in \mathbb{R}$, $|x-z| \le |x-y| + |y-z|$.

Proof. (i) If $a, b \ge 0$, then ab > 0 by Axiom 9, and by definition |ab| = ab = |a| |b|. If $b < 0 \le a$, then $a, -b \ge 0$ and -(ab) = a(-b) > 0, so ab < 0; thus |ab| = -ab = a(-b) = |a| |b| by Prop. 2. Similarly for $a < 0 \le b$. If a, b < 0, then ab = (-a)(-b) > 0 and |ab| = (-a)(-b) = |a| |b|. Axiom 7 guarantees that we have considered all possible cases.

(ii) We have $|x| = \max\{x, -x\}$, so $|a+b| = \max\{a+b, -a-b\}$, whereas we easily see: $|a| + |b| = \max\{a+b, a-b, -a+b, -a-b\}$. The larger set clearly has a larger maximum, so $|a+b| \le |a| + |b|$.

(iii) This follows from (ii) taking a = x - y, b = y - z, so that a + b = x - z.

Limits. Consider an infinite sequence $(a_n)_{n=1}^{\infty} = (a_1, a_2, a_3, \ldots)$ with $a_i \in \mathbb{R}$.

DEFINITION: We say (a_n) converges to L, written $\lim_{n\to\infty} a_n = L$, meaning that for any error bound $\epsilon > 0$, there exists a threshold $N \in \mathbb{N}$ (depending on ϵ) such that $n \ge N$ forces a_n into the error interval $L - \epsilon < a_n < L + \epsilon$. In symbols:

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ n > N \Rightarrow |a_n - L| \le \epsilon.$$

THEOREM: Suppose the sequence (a_n) is increasing, with an upper bound b: that is, $a_1 \leq a_2 \leq a_3 \leq \cdots \leq b$. Then (a_n) converges to $L = \sup\{a_n \mid n \geq 1\}$.

Proof. The least upper bound $L = \sup\{a_n\}$ exists by Axiom 10. Then L is an upper bound, so $a_n \leq L < L + \epsilon$ for all n and all $\epsilon > 0$.

Since L is the *least* upper bound, we know that $L - \epsilon$ is not an upper bound of (a_n) for any $\epsilon > 0$. This can only be if $L - \epsilon < a_N$ for some N, and since $a_N \leq a_n$ for all $n \geq N$, we have:

$$L - \epsilon < a_n < L + \epsilon,$$

namely $|L - a_n| < \epsilon$. In summary, for any $\epsilon > 0$, there is some N such that $n \ge N$ implies $|L - a_n| < \epsilon$. This is precisely the definition of $\lim_{n\to\infty} a_n = L$.

PROP: If $\lim_{n \to \infty} a_n = L$, $\lim_{n \to \infty} b_n = M$, then (i) $\lim_{n \to \infty} a_n + b_n = L + M$; (ii) $\lim_{n \to \infty} a_n b_n = LM$. *Proof.* By the definition of the limits in the hypothesis, for any $\epsilon_1 > 0$, there is N_1 such that $n \ge N_1 \implies |a_n - L| < \epsilon_1$; and for any $\epsilon_2 > 0$, there is N_2 such that $n \ge N_2 \implies |b_n - M| < \epsilon_2$.

(i) Now let $\epsilon > 0$ and take $\epsilon_1 = \epsilon_2 = \frac{1}{2}\epsilon$. Then taking $N = \max(N_1, N_2)$ above, for any $n \ge N$ we have:

$$\begin{aligned} |(a_n + b_n) - (L + M)| &= |(a_n - L) + (b_n - M)| \\ &\leq |a_n - L| + |b_n - M| \quad \text{by Triangle Inequality} \\ &< \epsilon_1 + \epsilon_2 = \epsilon \quad \text{since } n \ge N \ge N_1, N_2. \end{aligned}$$

(ii)

Problems

Prove the following statements using the above Axioms and Propositions.

1. If 0 < a < b, then $b^{-1} < a^{-1}$.

2a. There is no largest element of \mathbb{R} . Hint: Contradiction.

b. There is no smallest element of the positive reals $\mathbb{R}_{>0}$.

c. If $|x| < \epsilon$ for all $\epsilon > 0$, then x = 0. *Hint:* Contradiction.

3. The limit $\lim_{n\to\infty} a_n$ converges to at most one value. That is, if (a_n) converges to L and also to L', then L = L'. *Hint:* This is not just a matter of writing $L = \lim_{n\to\infty} a_n = L'$, since the whole point is to prove the limit in the middle is a well-defined, unambiguous value. Rather, write out the definition of $\lim_{n\to\infty} a_n = L$ and $\lim_{n\to\infty} a_n = L'$ and use Prop. 5(iii) above to prove that $|L - L'| < \epsilon$ for every $\epsilon > 0$. Why does this give the conclusion?

4a. Using the formal definiton, prove:

$$\lim_{n \to \infty} \frac{\left(1 + \frac{1}{n}\right)^2 - 1}{\frac{1}{n}} = 2.$$

Hint: For the rough draft, work backward from the conclusion $|a_n - L| < \epsilon$.

b. What does the above limit mean in calculus? *Hint:* It concerns the behavior of the function $f(x) = x^2$ near x = 1.

5. Using the formal definition, prove: The sequence $a_n = n^2$ diverges; that is, (a_n) does not converge to any value $L \in \mathbb{R}$, meaning $\lim_{n\to\infty} a_n = L$ is false.