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Algebra Axioms. In Real Analysis, we work within the axiomatic system of real
numbers: the set R along with the addition and multiplication operations +, ·, and
the inequality relation <. We do not need to list or describe the elements of R
directly; rather, anything we want to know about R will follow from Axioms 1–10.

We start with the axioms of the addition and multiplication operations, which
include the commutative group axioms. For any a, b, c ∈ R, we have:

1. Closure: a+ b ∈ R 1′. Closure: ab ∈ R
2. Associativity: (a+ b) + c = a+ (b+ c) 2′. Associativity: (ab)c = a(bc)
3. Identity element: ∃0, a+ 0 = a 3′. Identity element: ∃1 6= 0, a1 = a
4. Inverse: ∀a,∃ b, a+ b = 0. 4′. Inverse: ∀a 6= 0, ∃ b, ab = 1

Denote b = −a Denote b = a−1

5. Commutativity: a+ b = b+ a 5′. Commutativity: ab = ba

6. Distributivity: a(b+ c) = ab+ ac

We define new operations in terms of the basic ones: subtraction a−b means a+(−b);
and division a/b or a

b means a · b−1.
We also have the axioms of inequality. For any a, b, c, d ∈ R, we have:

7. Trichotomy: Exactly one of the following is true: a < b, a = b, a > b.
8. Compatibility of < with +: If a < b and c < d, then a+ c < b+ d.
9. Compatibility of < with · : If a < b and 0 < c, then ac < bc.

We define a > b to mean b < a, and a ≤ b to mean a < b or a = b.

Completeness. The final axiom gives a precise meaning to the idea that the real
numbers have no holes or gaps, but rather form a continuum.

First, some definitions. We say a number b ∈ R is an upper bound for a set S ⊂ R
whenever x ≤ b for all x ∈ S. Furthermore, ` is the least upper bound (or supremum)
of S means ` ≤ b for every upper bound b of S. We denote this as ` = lub(S) or
sup(S). Intuitively, the least upper bound is the “rightmost edge” of S on the real
number line.

examples: (i) Let S = N ⊂ R. Then S is an unbounded set having no upper bounds,
and hence no least upper bound.

(ii) Let S = {0.9, 0.99, 0.999, . . .}. Then every number b ≥ 1 is an upper bound
of S, and ` = sup(S) = 1 is the least upper bound. It makes no difference whether 1
is in the set or not: S ∪ {1} has the same upper bounds as S, and sup(S ∪ {1}) = 1.

(iii) Let S = {x ∈ R | x2 < 2}. Some upper bounds for S are upper approxi-
mations to

√
2, like a = 1.5, 1.42, 1.415, . . .. The least upper bound is sup(S) =

√
2

itself, which is a way of producing this irrational number without assuming it exists.

10. Axiom of Completeness: Any set S ⊂ R which has an upper bound,
also has a least upper bound in the reals: sup(S) ∈ R.

Note that this axiom fails for the rational numbers Q, and this is their main difference
from the real numbers. For example, the set in Example (iii) above has upper bounds
in R and in Q, but it has a least upper bound only in R: in the rationals Q, there is
a “hole” where sup(S) =

√
2 would be, since

√
2 is not rational.



Algebra Propositions. All the usual facts of algebra (including inequalities) can
be deduced from Axioms 1–9. Throughout, we implicitly use Axioms 2, 2′ to write
expressions like a+ b+ c instead of (a+ b) + c, and abc instead of (ab)c.

proposition 1 (Mulitplication by zero): 0a = 0.
Proof. By Axioms 3 and 6, we have: 0a = (0 + 0)a = 0a + 0a. Adding −0a to the
left and right sides of this equality, we get: 0a − 0a = 0a + 0a − 0a, which we can
simplify by Axioms 4 and 3 to 0 = 0a as desired.

proposition 2 (Multiplication with signs):

(i) −(−a) = a, (ii) (−a)b = −(ab), (iii) (−a)(−b) = ab.

Proof. (i) By Axiom 4, 0 = (−a) − (−a). Adding a to both sides gives: a =
a+ (−a)− (−a) = 0− (−a) = −(−a).

(ii) We have: (−a)b + ab = (−a + a)b = 0b = 0 by Prop. 1. Switching the sides:
0 = (−a)b + ab, and adding −(ab) to both sides: −(ab) = (−a)b + ab − (ab) =
(−a)b+ 0 = (−a)b.

(iii) Applying (ii) twice, we have: (−a)(−b) = −(a(−b)) = −((−b)a) = −(−(ba)) =
−(−(ab)). Thus (−a)(−b) = −(−(ab)) = ab by (i).

proposition 3. If a < b, then −b < −a.
Proof. Let a < b. Using Axiom 8, we add −a−b to both sides, getting: a+(−a−b) <
b+ (−a− b). Simplifying the left and right sides by Axioms 2, 3, 4, 5 gives −b < −a.

proposition 4. 0 < 1.
Proof. Surprisingly, this is not immediate. Suppose for a contradiction that 0 6< 1.
By Axiom 7, this means 0 ≥ 1, but Axiom 3′ says 0 6= 1. Thus 0 > 1, and by Prop. 3,
0 < −1, so by Axiom 9, 0(−1) < (−1)(−1). By Prop. 1, 0(−1) = 0, and by Prop. 2,
(−1)(−1) = (1)(1) = 1, which means 0 < 1. But we already saw 0 > 1, so this
contradicts the uniqueness part of Axiom 7. This contradiction shows 0 < 1.

proposition 5 (Transitivity of <): If a < b and b < c, then a < c.
Proof. Suppose a < b < c. By Axiom 8, we can subtract a from the first inequality
to get 0 < b− a, and subtract b from the second inequality to get 0 < c− b. Adding
these two inequalities: 0 < (b− a) + (c− b) = c− a. Adding a to ths inequality gives
a < (c− a) + a = c.

definition: |x| = x if x ≥ 0, and |x| = −x if x < 0.

proposition 6: For a, b ∈ R: (i) |ab| = |a| |b|. (ii) |a+ b| ≤ |a|+ |b|;
(iii) (Triangle inequality) For x, y, z ∈ R, |x− z| ≤ |x− y|+ |y − z|.

Proof. (i) If a, b ≥ 0, then ab > 0 by Axiom 9, and by definition |ab| = ab =
|a| |b|. If b < 0 ≤ a, then a,−b ≥ 0 and −(ab) = a(−b) > 0, so ab < 0; thus
|ab| = −ab = a(−b) = |a| |b| by Prop. 2. Similarly for a < 0 ≤ b. If a, b < 0, then
ab = (−a)(−b) > 0 and |ab| = (−a)(−b) = |a| |b|. Axiom 7 guarantees that we have
considered all possible cases.

(ii) We have |x| = max{x,−x}, so |a + b| = max{a + b,−a − b}, whereas we easily
see: |a|+ |b| = max{a+ b, a− b,−a+ b,−a− b}. The larger set clearly has a larger
maximum, so |a+ b| ≤ |a|+ |b|.
(iii) This follows from (ii) taking a = x− y, b = y − z, so that a+ b = x− z.



Limits. Consider an infinite sequence (an)∞n=1 = (a1, a2, a3, . . .) with ai ∈ R.

definition: We say (an) converges to L, written limn→∞ an = L, meaning that for
any error bound ε > 0, there exists a threshold N ∈ N (depending on ε) such that
n ≥ N forces an into the error interval L− ε < an < L+ ε. In symbols:

∀ε> 0, ∃N ∈N, n > N ⇒ |an − L| ≤ ε.

theorem: Suppose the sequence (an) is increasing, with an upper bound b: that is,
a1 ≤ a2 ≤ a3 ≤ · · · ≤ b. Then (an) converges to L = sup{an | n ≥ 1}.
Proof. The least upper bound L = sup{an} exists by Axiom 10. Then L is an upper
bound, so an ≤ L < L+ ε for all n and all ε > 0.

Since L is the least upper bound, we know that L − ε is not an upper bound of
(an) for any ε > 0. This can only be if L − ε < aN for some N , and since aN ≤ an
for all n ≥ N , we have:

L− ε < an < L+ ε,

namely |L − an| < ε. In summary, for any ε > 0, there is some N such that n ≥ N
implies |L− an| < ε. This is precisely the definition of limn→∞ an = L.

prop: If lim
n→∞

an =L, lim
n→∞

bn =M , then (i) lim
n→∞

an+bn = L+M ; (ii) lim
n→∞

anbn = LM .

Proof. By the definition of the limits in the hypothesis, for any ε1 > 0, there is N1

such that n ≥ N1 ⇒ |an − L| < ε1; and for any ε2 > 0, there is N2 such that
n ≥ N2 ⇒ |bn −M | < ε2.

(i) Now let ε > 0 and take ε1 = ε2 = 1
2ε. Then taking N = max(N1, N2) above,

for any n ≥ N we have:

|(an + bn)− (L+M)| = |(an−L) + (bn−M)|
≤ |an−L|+ |bn−M | by Triangle Inequality

< ε1 + ε2 = ε since n ≥ N ≥ N1, N2.

(ii)



Problems

Prove the following statements using the above Axioms and Propositions.

1. If 0 < a < b, then b−1 < a−1.

2a. There is no largest element of R. Hint: Contradiction.

b. There is no smallest element of the positive reals R>0.

c. If |x| < ε for all ε > 0, then x = 0. Hint: Contradiction.

3. The limit limn→∞ an converges to at most one value. That is, if (an) converges
to L and also to L′, then L = L′. Hint: This is not just a matter of writing L =
limn→∞ an = L′, since the whole point is to prove the limit in the middle is a well-
defined, unambiguous value. Rather, write out the definition of limn→∞ an = L and
limn→∞ an = L′ and use Prop. 5(iii) above to prove that |L−L′| < ε for every ε > 0.
Why does this give the conclusion?

4a. Using the formal definiton, prove:

lim
n→∞

(
1 + 1

n

)2 − 1
1
n

= 2.

Hint: For the rough draft, work backward from the conclusion |an − L| < ε.

b. What does the above limit mean in calculus? Hint: It concerns the behavior of
the function f(x) = x2 near x = 1.

5. Using the formal definition, prove: The sequence an = n2 diverges; that is, (an)
does not converge to any value L ∈ R, meaning limn→∞ an = L is false.


