
Math 299 Supplement: Real Analysis Nov 2013

Algebra Axioms. In Real Analysis, we work within the axiomatic system of real num-
bers: the set R along with the addition and multiplication operations +, ·, and the in-
equality relation <. We do not need to list or describe the elements of R directly; rather,
anything we want to know about R will follow from Axioms 1–10.

We start with the axioms of the addition and multiplication operations, which include
the commutative group axioms. For any a, b, c ∈ R, we have:

1. Closure: a+ b ∈ R 1′. Closure: ab ∈ R
2. Associativity: (a+ b) + c = a+ (b+ c) 2′. Associativity: (ab)c = a(bc)
3. Identity element: ∃0, a+ 0 = a 3′. Identity element: ∃1 6= 0, a1 = a
4. Inverse: ∀a,∃ b, a+ b = 0. 4′. Inverse: ∀a 6= 0, ∃ b, ab = 1

Denote b = −a Denote b = a−1

5. Commutativity: a+ b = b+ a 5′. Commutativity: ab = ba

6. Distributivity: a(b+ c) = ab+ ac

We define new operations in terms of the basic ones: subtraction a − b means a + (−b);
and division a/b or a

b means a · b−1.
We also have the axioms of inequality. For any a, b, c, d ∈ R, we have:

7. Trichotomy: Exactly one of the following is true: a < b, a = b, a > b.
8. Compatibility of < with +: If a < b and c < d, then a+ c < b+ d.
9. Compatibility of < with · : If a < b and 0 < c, then ac < bc.

We define a > b to mean b < a, and a ≤ b to mean a < b or a = b.

Completeness. The final axiom gives a precise meaning to the idea that the real numbers
have no holes or gaps, but rather form a continuum.

First, some definitions. We say a number b ∈ R is an upper bound for a set S ⊂ R
whenever x ≤ b for all x ∈ S. Furthermore, ` is the least upper bound (or supremum) of
S means ` ≤ b for every upper bound b of S. We denote this as ` = lub(S) or sup(S).
Intuitively, the least upper bound is the “rightmost edge” of S on the real number line.

examples: (i) Let S = N ⊂ R. Then S is an unbounded set having no upper bounds,
and hence no least upper bound.

(ii) Let S = {0.9, 0.99, 0.999, . . .}. Then every number b ≥ 1 is an upper bound of S,
and ` = sup(S) = 1 is the least upper bound. It makes no difference whether 1 is in the
set or not: S ∪ {1} has the same upper bounds as S, and sup(S ∪ {1}) = 1.

(iii) Let S = {x ∈ R | x2 < 2}. Some upper bounds for S are upper approximations
to
√

2, like a = 1.5, 1.42, 1.415, . . .. The least upper bound is sup(S) =
√

2 itself, which
is a way of producing this irrational number without assuming it exists.

10. Axiom of Completeness: Any set S ⊂ R which has an upper bound, also
has a least upper bound in the reals: sup(S) ∈ R.

Note that this axiom fails for the rational numbers Q, and this is their main difference
from the real numbers. For example, the set in Example (iii) above has upper bounds in
R and in Q, but it has a least upper bound only in R: in the rationals Q, there is a “hole”
where sup(S) =

√
2 would be, since

√
2 is not rational.
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Algebra Propositions. All the usual facts of algebra (including inequalities) can be
deduced from Axioms 1–9. Throughout, we implicitly use Axioms 2, 2′ to write expressions
like a+ b+ c instead of (a+ b) + c, and abc instead of (ab)c.

proposition 1 (Mulitplication by zero): 0a = 0.
Proof. By Axioms 3 and 6, we have: 0a = (0 + 0)a = 0a + 0a. Adding −0a to the left
and right sides of this equality, we get: 0a− 0a = 0a+ 0a− 0a, which we can simplify by
Axioms 4 and 3 to 0 = 0a as desired.

proposition 2 (Multiplication with signs):

(i) −(−a) = a, (ii) (−a)b = −(ab), (iii) (−a)(−b) = ab.

Proof. (i) By Axiom 4, 0 = (−a) − (−a). Adding a to both sides gives: a = a + (−a) −
(−a) = 0− (−a) = −(−a).

(ii) We have: (−a)b + ab = (−a + a)b = 0b = 0 by Prop. 1. Switching the sides: 0 =
(−a)b+ab, and adding −(ab) to both sides: −(ab) = (−a)b+ab−(ab) = (−a)b+0 = (−a)b.

(iii) Applying (ii) twice, we have: (−a)(−b) = −(a(−b)) = −((−b)a) = −(−(ba)) =
−(−(ab)). Thus (−a)(−b) = −(−(ab)) = ab by (i).

proposition 3. If a < b, then −b < −a.
Proof. Let a < b. Using Axiom 8, we add −a − b to both sides, getting: a + (−a − b) <
b+ (−a− b). Simplifying the left and right sides by Axioms 2, 3, 4, 5 gives −b < −a.

proposition 4. 0 < 1.
Proof. Surprisingly, this is not immediate. Suppose for a contradiction that 0 6< 1. By
Axiom 7, this means 0 ≥ 1, but Axiom 3′ says 0 6= 1. Thus 0 > 1, and by Prop. 3,
0 < −1, so by Axiom 9, 0(−1) < (−1)(−1). By Prop. 1, 0(−1) = 0, and by Prop. 2,
(−1)(−1) = (1)(1) = 1, which means 0 < 1. But we already saw 0 > 1, so this contradicts
the uniqueness part of Axiom 7. This contradiction shows 0 < 1.

proposition 5 (Transitivity of <): If a < b and b < c, then a < c.
Proof. Suppose a < b < c. By Axiom 8, we can subtract a from the first inequality
to get 0 < b − a, and subtract b from the second inequality to get 0 < c − b. Adding
these two inequalities: 0 < (b − a) + (c − b) = c − a. Adding a to ths inequality gives
a < (c− a) + a = c.

definition: |x| = x if x ≥ 0, and |x| = −x if x < 0.

proposition 6: For a, b ∈ R: (i) |ab| = |a| |b|. (ii) |a+ b| ≤ |a|+ |b|;
(iii) (Triangle inequality) For x, y, z ∈ R, |x− z| ≤ |x− y|+ |y − z|.

Proof. (i) If a, b ≥ 0, then ab > 0 by Axiom 9, and by definition |ab| = ab = |a| |b|. If
b < 0 ≤ a, then a,−b ≥ 0 and −(ab) = a(−b) > 0, so ab < 0; thus |ab| = −ab = a(−b) =
|a| |b| by Prop. 2. Similarly for a < 0 ≤ b. If a, b < 0, then ab = (−a)(−b) > 0 and
|ab| = (−a)(−b) = |a| |b|. Axiom 7 guarantees that we have considered all possible cases.

(ii) We have |x| = max{x,−x}, so |a + b| = max{a + b,−a − b}, whereas we easily see:
|a|+ |b| = max{a+ b, a− b,−a+ b,−a− b}. The larger set clearly has a larger maximum,
so |a+ b| ≤ |a|+ |b|.
(iii) This follows from (ii) taking a = x− y, b = y − z, so that a+ b = x− z.
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Limits. Consider an infinite sequence (an)∞n=1 = (a1, a2, a3, . . .) with ai ∈ R.

definition: We say (an) converges to the number L, written limn→∞ an = L, meaning
that for any error bound ε > 0, there exists a threshold N ∈ N (depending on ε) such that
n ≥ N forces an into the error interval L− ε < an < L+ ε. In symbols:

∀ε> 0, ∃N ∈N, n > N ⇒ |an − L| ≤ ε.

prop 7: If lim
n→∞

an =L, lim
n→∞

bn =M , then (i) lim
n→∞

an+bn = L+M ; (ii) lim
n→∞

anbn = LM .

Proof. By the definition of the limits in the hypothesis, for any ε1 > 0, there is N1 such
that n ≥ N1 ⇒ |an − L| < ε1; and for any ε2 > 0, there is N2 such that n ≥ N2 ⇒
|bn −M | < ε2.

(i) Now let ε > 0 and take ε1 = ε2 = 1
2ε. Then taking N = max(N1, N2) above, for

any n ≥ N we have:

|(an + bn)− (L+M)| = |(an−L) + (bn−M)|
≤ |an−L|+ |bn−M | by Prop 6, Triangle Inequality

< ε1 + ε2 = ε since n ≥ N ≥ N1, N2.

(ii) Now let ε > 0, and take ε1 = ε
2|L|+1 and ε2 = ε

2|M |+1 . Also take ε′1 = 1
2 , so that

n ≥ N ′1 ⇒ |an − L| < 1
2 , and |an| < |L| + 1

2 . Then taking N = max(N1, N2, N
′
1), for any

n ≥ N we have:

|anbn − LM | = |anbn − anM + anM − LM |
= |an(bn−M) + (an−L)M |
≤ |an| |bn−M |+ |an−L| |M | by Prop 6(ii)

< |an|ε2 + ε1|M | since n ≥ N ≥ N1, N2

< (|L|+1
2)

ε

2|L|+1
+

ε

2|M |+1
|M | since n ≥ N ′1

< ε
2 + ε

2 = ε since
x+ 1

2
2x+1 = 1

2 , x
2x+1 <

1
2 if x≥ 0.

Infinite Approximations. We use limits to handle real numbers which we cannot define
directly, but only through approximations, such as a derivative, an infinite series, or an
infinite decimal.

proposition 8: The derivative of the function f(x) = 1
x at x = 2, namely the tangent

slope of y = 1
x at (x, y) = (2, 12), is: f ′(2) = dy

dx |x=2 = −1
4 .

Rough Draft of Proof. The tangent line is very difficult to construct, because it is defined
as touching the curve at only the one point (2, 12), and one point does not define a line.
However, it is easy to construct secant lines, which cut the curve at two nearby points,
(2, 12) and (2+ 1

n ,
1

2+ 1
n

). The great idea of differential calculus is that the tangent slope is

the limit of secant slopes:

f ′(2) = lim
n→∞

f(2+ 1
n)− f(2)
1
n

= lim
n→∞

1
2+ 1

n

− 1
2

1
n

.

We want to show this limit converges to −1
4 , and we work backwards from the desired

conclusion, that the distance between the sequence and the limit is within any desired

3



error tolerance ε > 0: ∣∣∣∣∣∣
1

2+ 1
n

− 1
2

1
n

−
(
−1

4

)∣∣∣∣∣∣ < ε

Simplifying the lefthand side, this becomes:
∣∣∣− n

4n+2 + 1
4

∣∣∣ = 1
8n+4 < ε. Now, 1

8n+4 <
1
8n ,

so it is enough to show 1
8n < ε. Solving this last inequality for n gives: n ≥ 1

8ε . Thus,
to guarantee the desired conclusion, we only need that n ≥ N , where N is any integer
greater than 1

8ε . (If ε is a very small error tolerance, this N is very large, but we know
there is an integer larger than any given real number.)

Final Proof. We want to compute the derivative of f(x) at x = 2, and show:

f ′(2) = lim
n→∞

f(2+ 1
n)− f(2)
1
n

= lim
n→∞

1
2+ 1

n

− 1
2

1
n

= −1

4
.

Given ε > 0, take an integer N > 1
8ε . Then for n ≥ N , we compute:∣∣∣∣∣∣

1
2+ 1

n

− 1
2

1
n

−
(
−1

4

)∣∣∣∣∣∣ =

∣∣∣∣− n

4n+2
+

1

4

∣∣∣∣ =
1

8n+4
<

1

8n
≤ 1

8N
<

1

8
(
1
8ε

) = ε.

By definition, this proves the convergence of the limit.

theorem 9: Suppose the sequence (an) is increasing, with an upper bound b: that is,
a1 ≤ a2 ≤ a3 ≤ · · · ≤ b. Then (an) converges to L = sup{an | n ≥ 1}.
Proof. The least upper bound L = sup{an} exists by Axiom 10. Then L is an upper
bound, so an ≤ L < L+ ε for all n and all ε > 0.

Since L is the least upper bound, we know that L− ε is not an upper bound of (an) for
any ε > 0. This can only be if L− ε < aN for some N , and since aN ≤ an for all n ≥ N ,
we have:

L− ε < an < L+ ε,

namely |L−an| < ε. In summary, for any ε > 0, there is some N such that n ≥ N implies
|L− an| < ε. This is precisely the definition of limn→∞ an = L.

Proposition 10 (Sum of geometric series): For a fixed x ∈ R, define the geometric series
(sn) by: sn = 1 + x+ x2 + · · ·+ xn. If |x| < 1, then (sn) converges to L = 1

1−x .

Proof. Recall that we proved (by induction in HW due 10/23) the formula:

sn =
1− xn+1

1− x
.

In the case that 0 ≤ x < 1, we clearly have s1 ≤ s2 ≤ · · · ≤ 1
1−x , so that (sn) is an

increasing bounded sequence, and it converges by the Theorem.
We leave the exact value of the limit, and the case −1 < x < 0, as an exercise.

Theorem (Decimal expansions): Let (dn) = (d1, d2, . . .) be a sequence of digits, with
dn ∈ {0, 1, . . . , 9}. Define an increasing sequence (an) by:

an =
d1
10

+
d2
102

+
d2
103

+ · · ·+ dn
10n

,
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namely the n-digit decimal 0.d1d2 . . . dn. Then (an) converges to a unique real number,
the infinite decimal 0.d1d2d3 . . . .

Proof. We clearly have dn
10n <

10
10n , so that an < bn for the geometric series:

bn = 1 + 1
10 +

(
1
10

)2
+ · · ·+

(
1
10

)n
.

Now, by the previous proposition, the geometric series (bn) has the upper bound b = 1
1−x

for x = 1
10 , and we have an < bn < b, so that (an) is an increasing bounded sequence, and

converges to some real number.

Proposition 11: There is positive real number ` with `2 = 2; that is,
√

2 ∈ R.

Proof. Let S = {x ∈ R | x2 < 2}. Now, if x ∈ S and 1 < x, then x < x2 < 2, so clearly
b = 2 is an upper bound of S. By the Completeness Axiom, S has a least upper bound
` = sup(S) ≤ 2.

We will show that `2 = 2 by contradiction. First, suppose `2 < 2. Then we may choose
ε with 0 < ε < 1

5(2− `2), and also ε < 1. We compute:

(`+ ε)2 = `2 + (2`+ε)ε

< 2 + (2(2)+1)ε

< 2 + (5)(15)(2−`2) = 2.

By definition, this means `+ ε ∈ S with ε > 0; but ` is an upper bound of S, so `+ ε ≤ `
with ε > 0. This contradiction shows `2 < 2 is impossible.

Next, suppose `2 > 2. Then we may choose ε with 0 < ε < 1
4(`2 − 2), and also ε < 1.

We compute:
(`− ε)2 = `2 − 2`ε+ ε2

> 2− 2(2)ε+ 0

> 2− (4)(14)(`2 − 2) = 2.

Thus, for any x ∈ S, we have x2 < 2 < (`− ε)2, with `− ε > `− 1 ≥ 0. Now we apply the
exercise that if x2 < y2 with y > 0, then x < y: letting y = ` − ε, this means x < ` − ε.
Thus `− ε is an upper bound of S, but ` is the least upper bound, so ` ≤ `− ε with ε > 0.
This contradiction shows `2 > 2 is impossible.
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Problems

Prove the following statements using the above Axioms and Propositions (saying
which results you use).

1. If 0 < a < b, then b−1 < a−1.

2. For y > 0, if x2 < y2, then x < y.

3a. Using the formal definiton, prove: lim
n→∞

(1+ 1
n)

2−1
1
n

= 2.

Hint: For the rough draft, work backward from the conclusion |an − L| < ε.

b. What does the above limit mean in calculus? Hint: It concerns the behavior of
the function f(x) = x2 near x = 1.

c. Prove that lim
n→∞

2n2−1
3n2+n

= 2/3. Hint: Avoid false inequalities like |1− 2n|
?
< |1| or

1
2n2−1

?
< 1

2n2 . You may use that an− c > a
2n for a > 0 and large n (how large?).

4a. There is no largest element of R. Hint: Contradiction.

b. There is no smallest element of the positive reals R>0.

c. If |x| < ε for all ε > 0, then x = 0. Hint: Contradiction.

5. The limit limn→∞ an converges to at most one value. That is, if (an) converges
to L and also to L′, then L = L′.

Hint: This is not just a matter of writing L = limn→∞ an = L′, since the
whole point is to prove the limit in the middle is a well-defined, unambiguous value.
Rather, write out the definition of limn→∞ an = L and limn→∞ an = L′ and use the
Triangle Inequality above to prove that |L−L′| < ε for every ε > 0. Why does this
give the conclusion?

6. If (an) is a convergent sequence, then the sequence is bounded. That is, if
limn→∞ an = L, then there is some B with an ≤ B for all n.

7. Consider the sequence an = n2.

a. Prove that limn→∞ an = ∞. This means that for every bound B ∈ R, there is
a threshold N such that n ≥N implies that an > B. That is, an goes above any
bound for large enough values of N .

b. Prove that (an) is divergent; that is, (an) does not converge to any value L ∈ R,
meaning limn→∞ an = L is false.

Hint: This does not follow immediately from part (a): you must show the defini-
tion of limn→∞ an =∞ implies the negation of the definition of limn→∞ an = L, for
any L. This means that there is an error bound, say ε = 1, such that no matter how
large n ≥ N is, the sequence an is not forced within the error bound |an − L| < ε.



8. For each statement (a), (b) below, either prove it is true, or find a counterexample
and prove its properties. Let (an) and (bn) be any two real sequences, and define
their sum (cn) by cn = an + bn.

a. If (an) and (bn) are convergent, then (cn) is convergent. Hint: We discussed this
situation in class; see also Beck Prop. 10.23.

b. If (cn) is convergent, then (an) and (bn) are convergent. Hint: Is there any way
(an) and (bn) could fluctuate around, even though (cn) is converging to some L?

9. Use the geometric series formula limn→∞(1+x+x2+ · · ·+xn) = 1
1−x to find a

fractional form a
b for the repeating decimal 0.7343434 · · · = 0.734 . Hint: Write the

decimal as 0.7 plus a multiple of a geometric series with x = 1
100 .

10. For bounded subsets S, T ⊂ R, and U = {x + y | x ∈ S, y ∈ T}, we have
sup(U) = sup(S) + sup(T ).

11. Define a lower bound for a set S ⊂ R to mean some b ∈ R with b ≤ x for all
x ∈ S. The greatest lower bound or infimum of S, denoted glb(S) or inf(S), means
a lower bound g with g ≥ b for all lower bounds b. Denote −S = {−x | x ∈ S}.
a. The number b is a lower bound of S if and only if −b is an upper bound of −S.

b. inf(S) = − sup(−S).

c. Any set S having a lower bound b has a greatest lower bound g = inf(S) ∈ R.


