Algebra Axioms. In Real Analysis, we work within the axiomatic system of real numbers: the set \mathbb{R} along with the addition and multiplication operations,$+ \cdot$, and the inequality relation $<$. We do not need to list or describe the elements of \mathbb{R} directly; rather, anything we want to know about \mathbb{R} will follow from Axioms 1-10.

We start with the axioms of the addition and multiplication operations, which include the commutative group axioms. For any $a, b, c \in \mathbb{R}$, we have:

1. Closure: $a+b \in \mathbb{R} \quad 1^{\prime}$. Closure: $a b \in \mathbb{R}$
2. Associativity: $(a+b)+c=a+(b+c)$
3. Identity element: $\exists 0, a+0=a$
4. Inverse: $\forall a, \exists b, a+b=0$.

Denote $b=-a$
5. Commutativity: $a+b=b+a$

2'. Associativity: $(a b) c=a(b c)$
3^{\prime}. Identity element: $\exists 1 \neq 0, a 1=a$
4. Inverse: $\forall a \neq 0, \exists b, a b=1$

Denote $b=a^{-1}$
5'. Commutativity: $a b=b a$
6. Distributivity: $a(b+c)=a b+a c$

We define new operations in terms of the basic ones: subtraction $a-b$ means $a+(-b)$; and division a / b or $\frac{a}{b}$ means $a \cdot b^{-1}$.

We also have the axioms of inequality. For any $a, b, c, d \in \mathbb{R}$, we have:
7. Trichotomy: Exactly one of the following is true: $a<b, a=b, a>b$.
8. Compatibility of $<$ with + : If $a<b$ and $c<d$, then $a+c<b+d$.
9. Compatibility of $<$ with \cdot : If $a<b$ and $0<c$, then $a c<b c$.

We define $a>b$ to mean $b<a$, and $a \leq b$ to mean $a<b$ or $a=b$.
Completeness. The final axiom gives a precise meaning to the idea that the real numbers have no holes or gaps, but rather form a continuum.

First, some definitions. We say a number $b \in \mathbb{R}$ is an upper bound for a set $S \subset \mathbb{R}$ whenever $x \leq b$ for all $x \in S$. Furthermore, ℓ is the least upper bound (or supremum) of S means $\ell \leq b$ for every upper bound b of S. We denote this as $\ell=\operatorname{lub}(S)$ or $\sup (S)$. Intuitively, the least upper bound is the "rightmost edge" of S on the real number line.
EXAMPLES: (i) Let $S=\mathbb{N} \subset \mathbb{R}$. Then S is an unbounded set having no upper bounds, and hence no least upper bound.
(ii) Let $S=\{0.9,0.99,0.999, \ldots\}$. Then every number $b \geq 1$ is an upper bound of S, and $\ell=\sup (S)=1$ is the least upper bound. It makes no difference whether 1 is in the set or not: $S \cup\{1\}$ has the same upper bounds as S, and $\sup (S \cup\{1\})=1$.
(iii) Let $S=\left\{x \in \mathbb{R} \mid x^{2}<2\right\}$. Some upper bounds for S are upper approximations to $\sqrt{2}$, like $a=1.5,1.42,1.415, \ldots$. The least upper bound is $\sup (S)=\sqrt{2}$ itself, which is a way of producing this irrational number without assuming it exists.
10. Axiom of Completeness: Any set $S \subset \mathbb{R}$ which has an upper bound, also has a least upper bound in the reals: $\sup (S) \in \mathbb{R}$.

Note that this axiom fails for the rational numbers \mathbb{Q}, and this is their main difference from the real numbers. For example, the set in Example (iii) above has upper bounds in \mathbb{R} and in \mathbb{Q}, but it has a least upper bound only in \mathbb{R} : in the rationals \mathbb{Q}, there is a "hole" where $\sup (S)=\sqrt{2}$ would be, since $\sqrt{2}$ is not rational.

Algebra Propositions. All the usual facts of algebra (including inequalities) can be deduced from Axioms 1-9. Throughout, we implicitly use Axioms 2, 2^{\prime} to write expressions like $a+b+c$ instead of $(a+b)+c$, and $a b c$ instead of $(a b) c$.
PROPOSITION 1 (Mulitplication by zero): $0 a=0$.
Proof. By Axioms 3 and 6 , we have: $0 a=(0+0) a=0 a+0 a$. Adding $-0 a$ to the left and right sides of this equality, we get: $0 a-0 a=0 a+0 a-0 a$, which we can simplify by Axioms 4 and 3 to $0=0 a$ as desired.
PROPOSITION 2 (Multiplication with signs):

$$
\text { (i) }-(-a)=a, \quad \text { (ii) }(-a) b=-(a b), \quad \text { (iii) }(-a)(-b)=a b .
$$

Proof. (i) By Axiom 4, $0=(-a)-(-a)$. Adding a to both sides gives: $a=a+(-a)-$ $(-a)=0-(-a)=-(-a)$.
(ii) We have: $(-a) b+a b=(-a+a) b=0 b=0$ by Prop. 1 . Switching the sides: $0=$ $(-a) b+a b$, and adding $-(a b)$ to both sides: $-(a b)=(-a) b+a b-(a b)=(-a) b+0=(-a) b$. (iii) Applying (ii) twice, we have: $(-a)(-b)=-(a(-b))=-((-b) a)=-(-(b a))=$ $-(-(a b))$. Thus $(-a)(-b)=-(-(a b))=a b$ by (i).
PROPOSITION 3. If $a<b$, then $-b<-a$.
Proof. Let $a<b$. Using Axiom 8, we add $-a-b$ to both sides, getting: $a+(-a-b)<$ $b+(-a-b)$. Simplifying the left and right sides by Axioms 2, 3, 4, 5 gives $-b<-a$.
PROPOSITION $4.0<1$.
Proof. Surprisingly, this is not immediate. Suppose for a contradiction that $0 \nless 1$. By Axiom 7, this means $0 \geq 1$, but Axiom 3^{\prime} says $0 \neq 1$. Thus $0>1$, and by Prop. 3, $0<-1$, so by Axiom $9,0(-1)<(-1)(-1)$. By Prop. $1,0(-1)=0$, and by Prop. 2, $(-1)(-1)=(1)(1)=1$, which means $0<1$. But we already saw $0>1$, so this contradicts the uniqueness part of Axiom 7. This contradiction shows $0<1$.
Proposition 5 (Transitivity of $<$): If $a<b$ and $b<c$, then $a<c$.
Proof. Suppose $a<b<c$. By Axiom 8, we can subtract a from the first inequality to get $0<b-a$, and subtract b from the second inequality to get $0<c-b$. Adding these two inequalities: $0<(b-a)+(c-b)=c-a$. Adding a to ths inequality gives $a<(c-a)+a=c$.
DEFINITION: $|x|=x$ if $x \geq 0$, and $|x|=-x$ if $x<0$.
PROPOSITION 6: For $a, b \in \mathbb{R}$: (i) $|a b|=|a||b|$. (ii) $|a+b| \leq|a|+|b|$;
(iii) (Triangle inequality) For $x, y, z \in \mathbb{R}, \quad|x-z| \leq|x-y|+|y-z|$.

Proof. (i) If $a, b \geq 0$, then $a b>0$ by Axiom 9 , and by definition $|a b|=a b=|a||b|$. If $b<0 \leq a$, then $a,-b \geq 0$ and $-(a b)=a(-b)>0$, so $a b<0$; thus $|a b|=-a b=a(-b)=$ $|a||b|$ by Prop. 2. Similarly for $a<0 \leq b$. If $a, b<0$, then $a b=(-a)(-b)>0$ and $|a b|=(-a)(-b)=|a||b|$. Axiom 7 guarantees that we have considered all possible cases.
(ii) We have $|x|=\max \{x,-x\}$, so $|a+b|=\max \{a+b,-a-b\}$, whereas we easily see: $|a|+|b|=\max \{a+b, a-b,-a+b,-a-b\}$. The larger set clearly has a larger maximum, so $|a+b| \leq|a|+|b|$.
(iii) This follows from (ii) taking $a=x-y, b=y-z$, so that $a+b=x-z$.

Limits. Consider an infinite sequence $\left(a_{n}\right)_{n=1}^{\infty}=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ with $a_{i} \in \mathbb{R}$.
DEFINITION: We say $\left(a_{n}\right)$ converges to the number L, written $\lim _{n \rightarrow \infty} a_{n}=L$, meaning that for any error bound $\epsilon>0$, there exists a threshold $N \in \mathbb{N}$ (depending on ϵ) such that $n \geq N$ forces a_{n} into the error interval $L-\epsilon<a_{n}<L+\epsilon$. In symbols:

$$
\forall \epsilon>0, \exists N \in \mathbb{N}, n>N \Rightarrow\left|a_{n}-L\right| \leq \epsilon .
$$

PROP 7: If $\lim _{n \rightarrow \infty} a_{n}=L, \lim _{n \rightarrow \infty} b_{n}=M$, then (i) $\lim _{n \rightarrow \infty} a_{n}+b_{n}=L+M$; (ii) $\lim _{n \rightarrow \infty} a_{n} b_{n}=L M$. Proof. By the definition of the limits in the hypothesis, for any $\epsilon_{1}>0$, there is N_{1} such that $n \geq N_{1} \Rightarrow\left|a_{n}-L\right|<\epsilon_{1}$; and for any $\epsilon_{2}>0$, there is N_{2} such that $n \geq N_{2} \Rightarrow$ $\left|b_{n}-M\right|<\epsilon_{2}$.
(i) Now let $\epsilon>0$ and take $\epsilon_{1}=\epsilon_{2}=\frac{1}{2} \epsilon$. Then taking $N=\max \left(N_{1}, N_{2}\right)$ above, for any $n \geq N$ we have:

$$
\begin{aligned}
\left|\left(a_{n}+b_{n}\right)-(L+M)\right| & =\left|\left(a_{n}-L\right)+\left(b_{n}-M\right)\right| & & \\
& \leq\left|a_{n}-L\right|+\left|b_{n}-M\right| & & \text { by Prop } 6, \text { Triangle Inequality } \\
& <\epsilon_{1}+\epsilon_{2}=\epsilon & & \text { since } n \geq N \geq N_{1}, N_{2} .
\end{aligned}
$$

(ii) Now let $\epsilon>0$, and take $\epsilon_{1}=\frac{\epsilon}{2|L|+1}$ and $\epsilon_{2}=\frac{\epsilon}{2|M|+1}$. Also take $\epsilon_{1}^{\prime}=\frac{1}{2}$, so that $n \geq N_{1}^{\prime} \Rightarrow\left|a_{n}-L\right|<\frac{1}{2}$, and $\left|a_{n}\right|<|L|+\frac{1}{2}$. Then taking $N=\max \left(N_{1}, N_{2}, N_{1}^{\prime}\right)$, for any $n \geq N$ we have:

$$
\begin{aligned}
\left|a_{n} b_{n}-L M\right| & =\left|a_{n} b_{n}-a_{n} M+a_{n} M-L M\right| & & \\
& =\left|a_{n}\left(b_{n}-M\right)+\left(a_{n}-L\right) M\right| & & \\
& \leq\left|a_{n}\right|\left|b_{n}-M\right|+\left|a_{n}-L\right||M| & & \text { by Prop } 6(\text { ii }) \\
& <\left|a_{n}\right| \epsilon_{2}+\epsilon_{1}|M| & & \text { since } n \geq N \geq N_{1}, N_{2} \\
& <\left(|L|+\frac{1}{2}\right) \frac{\epsilon}{2|L|+1}+\frac{\epsilon}{2|M|+1}|M| & & \text { since } n \geq N_{1}^{\prime} \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon & & \text { since } \frac{x+\frac{1}{2}}{2 x+1}=\frac{1}{2}, \frac{x}{2 x+1}<\frac{1}{2} \text { if } x \geq 0 .
\end{aligned}
$$

Infinite Approximations. We use limits to handle real numbers which we cannot define directly, but only through approximations, such as a derivative, an infinite series, or an infinite decimal.
PROPOSITION 8: The derivative of the function $f(x)=\frac{1}{x}$ at $x=2$, namely the tangent slope of $y=\frac{1}{x}$ at $(x, y)=\left(2, \frac{1}{2}\right)$, is: $f^{\prime}(2)=\left.\frac{d y}{d x}\right|_{x=2}=-\frac{1}{4}$.
Rough Draft of Proof. The tangent line is very difficult to construct, because it is defined as touching the curve at only the one point $\left(2, \frac{1}{2}\right)$, and one point does not define a line. However, it is easy to construct secant lines, which cut the curve at two nearby points, $\left(2, \frac{1}{2}\right)$ and $\left(2+\frac{1}{n}, \frac{1}{2+\frac{1}{n}}\right)$. The great idea of differential calculus is that the tangent slope is the limit of secant slopes:

$$
f^{\prime}(2)=\lim _{n \rightarrow \infty} \frac{f\left(2+\frac{1}{n}\right)-f(2)}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{2+\frac{1}{n}}-\frac{1}{2}}{\frac{1}{n}} .
$$

We want to show this limit converges to $-\frac{1}{4}$, and we work backwards from the desired conclusion, that the distance between the sequence and the limit is within any desired
error tolerance $\epsilon>0$:

$$
\left|\frac{\frac{1}{2+\frac{1}{n}}-\frac{1}{2}}{\frac{1}{n}}-\left(-\frac{1}{4}\right)\right|<\epsilon
$$

Simplifying the lefthand side, this becomes: $\left|-\frac{n}{4 n+2}+\frac{1}{4}\right|=\frac{1}{8 n+4}<\epsilon$. Now, $\frac{1}{8 n+4}<\frac{1}{8 n}$, so it is enough to show $\frac{1}{8 n}<\epsilon$. Solving this last inequality for n gives: $n \geq \frac{1}{8 \epsilon}$. Thus, to guarantee the desired conclusion, we only need that $n \geq N$, where N is any integer greater than $\frac{1}{8 \epsilon}$. (If ϵ is a very small error tolerance, this N is very large, but we know there is an integer larger than any given real number.)
Final Proof. We want to compute the derivative of $f(x)$ at $x=2$, and show:

$$
f^{\prime}(2)=\lim _{n \rightarrow \infty} \frac{f\left(2+\frac{1}{n}\right)-f(2)}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{2+\frac{1}{n}}-\frac{1}{2}}{\frac{1}{n}}=-\frac{1}{4} .
$$

Given $\epsilon>0$, take an integer $N>\frac{1}{8 \epsilon}$. Then for $n \geq N$, we compute:

$$
\left|\frac{\frac{1}{2+\frac{1}{n}}-\frac{1}{2}}{\frac{1}{n}}-\left(-\frac{1}{4}\right)\right|=\left|-\frac{n}{4 n+2}+\frac{1}{4}\right|=\frac{1}{8 n+4}<\frac{1}{8 n} \leq \frac{1}{8 N}<\frac{1}{8\left(\frac{1}{8 \epsilon}\right)}=\epsilon .
$$

By definition, this proves the convergence of the limit.
THEOREM 9: Suppose the sequence $\left(a_{n}\right)$ is increasing, with an upper bound b : that is, $a_{1} \leq a_{2} \leq a_{3} \leq \cdots \leq b$. Then $\left(a_{n}\right)$ converges to $L=\sup \left\{a_{n} \mid n \geq 1\right\}$.
Proof. The least upper bound $L=\sup \left\{a_{n}\right\}$ exists by Axiom 10. Then L is an upper bound, so $a_{n} \leq L<L+\epsilon$ for all n and all $\epsilon>0$.

Since L is the least upper bound, we know that $L-\epsilon$ is not an upper bound of $\left(a_{n}\right)$ for any $\epsilon>0$. This can only be if $L-\epsilon<a_{N}$ for some N, and since $a_{N} \leq a_{n}$ for all $n \geq N$, we have:

$$
L-\epsilon<a_{n}<L+\epsilon
$$

namely $\left|L-a_{n}\right|<\epsilon$. In summary, for any $\epsilon>0$, there is some N such that $n \geq N$ implies $\left|L-a_{n}\right|<\epsilon$. This is precisely the definition of $\lim _{n \rightarrow \infty} a_{n}=L$.
Proposition 10 (Sum of geometric series): For a fixed $x \in \mathbb{R}$, define the geometric series $\left(s_{n}\right)$ by: $s_{n}=1+x+x^{2}+\cdots+x^{n}$. If $|x|<1$, then $\left(s_{n}\right)$ converges to $L=\frac{1}{1-x}$.
Proof. Recall that we proved (by induction in HW due 10/23) the formula:

$$
s_{n}=\frac{1-x^{n+1}}{1-x}
$$

In the case that $0 \leq x<1$, we clearly have $s_{1} \leq s_{2} \leq \cdots \leq \frac{1}{1-x}$, so that $\left(s_{n}\right)$ is an increasing bounded sequence, and it converges by the Theorem.

We leave the exact value of the limit, and the case $-1<x<0$, as an exercise.
Theorem (Decimal expansions): Let $\left(d_{n}\right)=\left(d_{1}, d_{2}, \ldots\right)$ be a sequence of digits, with $d_{n} \in\{0,1, \ldots, 9\}$. Define an increasing sequence $\left(a_{n}\right)$ by:

$$
a_{n}=\frac{d_{1}}{10}+\frac{d_{2}}{10^{2}}+\frac{d_{2}}{10^{3}}+\cdots+\frac{d_{n}}{10^{n}}
$$

namely the n-digit decimal $0 . d_{1} d_{2} \ldots d_{n}$. Then $\left(a_{n}\right)$ converges to a unique real number, the infinite decimal $0 . d_{1} d_{2} d_{3} \ldots$
Proof. We clearly have $\frac{d_{n}}{10^{n}}<\frac{10}{10^{n}}$, so that $a_{n}<b_{n}$ for the geometric series:

$$
b_{n}=1+\frac{1}{10}+\left(\frac{1}{10}\right)^{2}+\cdots+\left(\frac{1}{10}\right)^{n} .
$$

Now, by the previous proposition, the geometric series $\left(b_{n}\right)$ has the upper bound $b=\frac{1}{1-x}$ for $x=\frac{1}{10}$, and we have $a_{n}<b_{n}<b$, so that $\left(a_{n}\right)$ is an increasing bounded sequence, and converges to some real number.
Proposition 11: There is positive real number ℓ with $\ell^{2}=2$; that is, $\sqrt{2} \in \mathbb{R}$.
Proof. Let $S=\left\{x \in \mathbb{R} \mid x^{2}<2\right\}$. Now, if $x \in S$ and $1<x$, then $x<x^{2}<2$, so clearly $b=2$ is an upper bound of S. By the Completeness Axiom, S has a least upper bound $\ell=\sup (S) \leq 2$.

We will show that $\ell^{2}=2$ by contradiction. First, suppose $\ell^{2}<2$. Then we may choose ϵ with $0<\epsilon<\frac{1}{5}\left(2-\ell^{2}\right)$, and also $\epsilon<1$. We compute:

$$
\begin{aligned}
(\ell+\epsilon)^{2} & =\ell^{2}+(2 \ell+\epsilon) \epsilon \\
& <2+(2(2)+1) \epsilon \\
& <2+(5)\left(\frac{1}{5}\right)\left(2-\ell^{2}\right)=2 .
\end{aligned}
$$

By definition, this means $\ell+\epsilon \in S$ with $\epsilon>0$; but ℓ is an upper bound of S, so $\ell+\epsilon \leq \ell$ with $\epsilon>0$. This contradiction shows $\ell^{2}<2$ is impossible.

Next, suppose $\ell^{2}>2$. Then we may choose ϵ with $0<\epsilon<\frac{1}{4}\left(\ell^{2}-2\right)$, and also $\epsilon<1$. We compute:

$$
\begin{aligned}
(\ell-\epsilon)^{2} & =\ell^{2}-2 \ell \epsilon+\epsilon^{2} \\
& >2-2(2) \epsilon+0 \\
& >2-(4)\left(\frac{1}{4}\right)\left(\ell^{2}-2\right)=2 .
\end{aligned}
$$

Thus, for any $x \in S$, we have $x^{2}<2<(\ell-\epsilon)^{2}$, with $\ell-\epsilon>\ell-1 \geq 0$. Now we apply the exercise that if $x^{2}<y^{2}$ with $y>0$, then $x<y$: letting $y=\ell-\epsilon$, this means $x<\ell-\epsilon$. Thus $\ell-\epsilon$ is an upper bound of S, but ℓ is the least upper bound, so $\ell \leq \ell-\epsilon$ with $\epsilon>0$. This contradiction shows $\ell^{2}>2$ is impossible.

Problems

Prove the following statements using the above Axioms and Propositions (saying which results you use).

1. If $0<a<b$, then $b^{-1}<a^{-1}$.
2. For $y>0$, if $x^{2}<y^{2}$, then $x<y$.

3a. Using the formal definiton, prove: $\lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{n}\right)^{2}-1}{\frac{1}{n}}=2$.
Hint: For the rough draft, work backward from the conclusion $\left|a_{n}-L\right|<\epsilon$.
b. What does the above limit mean in calculus? Hint: It concerns the behavior of the function $f(x)=x^{2}$ near $x=1$.
c. Prove that $\lim _{n \rightarrow \infty} \frac{2 n^{2}-1}{3 n^{2}+n}=2 / 3$. Hint: Avoid false inequalities like $|1-2 n| \stackrel{?}{<}|1|$ or $\frac{1}{2 n^{2}-1} \stackrel{?}{<} \frac{1}{2 n^{2}}$. You may use that $a n-c>\frac{a}{2} n$ for $a>0$ and large n (how large?).

4a. There is no largest element of \mathbb{R}. Hint: Contradiction.
b. There is no smallest element of the positive reals $\mathbb{R}_{>0}$.
c. If $|x|<\epsilon$ for all $\epsilon>0$, then $x=0$. Hint: Contradiction.
5. The limit $\lim _{n \rightarrow \infty} a_{n}$ converges to at most one value. That is, if $\left(a_{n}\right)$ converges to L and also to L^{\prime}, then $L=L^{\prime}$.

Hint: This is not just a matter of writing $L=\lim _{n \rightarrow \infty} a_{n}=L^{\prime}$, since the whole point is to prove the limit in the middle is a well-defined, unambiguous value. Rather, write out the definition of $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} a_{n}=L^{\prime}$ and use the Triangle Inequality above to prove that $\left|L-L^{\prime}\right|<\epsilon$ for every $\epsilon>0$. Why does this give the conclusion?
6. If $\left(a_{n}\right)$ is a convergent sequence, then the sequence is bounded. That is, if $\lim _{n \rightarrow \infty} a_{n}=L$, then there is some B with $a_{n} \leq B$ for all n.
7. Consider the sequence $a_{n}=n^{2}$.
a. Prove that $\lim _{n \rightarrow \infty} a_{n}=\infty$. This means that for every bound $B \in \mathbb{R}$, there is a threshold N such that $n \geq \mathrm{N}$ implies that $a_{n}>B$. That is, a_{n} goes above any bound for large enough values of N.
b. Prove that $\left(a_{n}\right)$ is divergent; that is, $\left(a_{n}\right)$ does not converge to any value $L \in \mathbb{R}$, meaning $\lim _{n \rightarrow \infty} a_{n}=L$ is false.

Hint: This does not follow immediately from part (a): you must show the definition of $\lim _{n \rightarrow \infty} a_{n}=\infty$ implies the negation of the definition of $\lim _{n \rightarrow \infty} a_{n}=L$, for any L. This means that there is an error bound, say $\epsilon=1$, such that no matter how large $n \geq N$ is, the sequence a_{n} is not forced within the error bound $\left|a_{n}-L\right|<\epsilon$.
8. For each statement (a), (b) below, either prove it is true, or find a counterexample and prove its properties. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be any two real sequences, and define their sum $\left(c_{n}\right)$ by $c_{n}=a_{n}+b_{n}$.
a. If $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are convergent, then $\left(c_{n}\right)$ is convergent. Hint: We discussed this situation in class; see also Beck Prop. 10.23.
b. If $\left(c_{n}\right)$ is convergent, then $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are convergent. Hint: Is there any way $\left(a_{n}\right)$ and $\left(b_{n}\right)$ could fluctuate around, even though $\left(c_{n}\right)$ is converging to some L ?
9. Use the geometric series formula $\lim _{n \rightarrow \infty}\left(1+x+x^{2}+\cdots+x^{n}\right)=\frac{1}{1-x}$ to find a fractional form $\frac{a}{b}$ for the repeating decimal $0.7343434 \cdots=0.7 \overline{34}$. Hint: Write the decimal as 0.7 plus a multiple of a geometric series with $x=\frac{1}{100}$.
10. For bounded subsets $S, T \subset \mathbb{R}$, and $U=\{x+y \mid x \in S, y \in T\}$, we have $\sup (U)=\sup (S)+\sup (T)$.
11. Define a lower bound for a set $S \subset \mathbb{R}$ to mean some $b \in \mathbb{R}$ with $b \leq x$ for all $x \in S$. The greatest lower bound or infimum of S, denoted $\operatorname{glb}(S)$ or $\inf (S)$, means a lower bound g with $g \geq b$ for all lower bounds b. Denote $-S=\{-x \mid x \in S\}$.
a. The number b is a lower bound of S if and only if $-b$ is an upper bound of $-S$.
b. $\inf (S)=-\sup (-S)$.
c. Any set S having a lower bound b has a greatest lower bound $g=\inf (S) \in \mathbb{R}$.

