1. Prove that the following system of equations has no integer solutions.

$$
\begin{aligned}
& 11 x-5 y=7 \\
& 9 x+10 y=-3
\end{aligned}
$$

Hint: Consider each of the equations mod 5.
Solution: Assume, by way of contradiction that $(x, y) \in \mathbb{Z}^{2}$ is a solution to the above system then

$$
\begin{aligned}
x & \equiv 2 \bmod 5 \\
4 x & \equiv 2 \bmod 5
\end{aligned}
$$

The first equation (multiplying both sides by 4) implies $4 x \equiv 3 \bmod 5$, which contradicts the second equation. Thus the assumption that the system has an integer solution leads to a contradiction. Therefore, we can conclude that the above system has no integer solutions.
2. Prove: An integer is divisible by 3 if and only if the sum of its digits is divisible by 3 .

Solution: Let $x \in \mathbb{Z}$ and a_{i} be the $i^{\text {th }}$ digit in its decimal representation, i.e., $x=$ $\sum_{i=0}^{k} a_{i} 10^{i}$, where $0 \leq a_{i} \leq 9$ for all $i=0, \ldots, k$. Note that $10^{i} \equiv 1 \bmod 3$ for all $i \in \mathbb{N}$. Thus,

$$
x \equiv \sum_{i=0}^{k} a_{i} \bmod 3
$$

Use this to show that $3 \mid x$ if and only if $3 \mid \sum_{i=0}^{k} a_{i}$.
3.
(a) Find the multiplicative inverse of each nonzero element in \mathbb{Z}_{7}. Solution:

$$
\overline{1}^{-1}=\overline{1}, \quad \overline{2}^{-1}=\overline{4}, \quad \overline{3}^{-1}=\overline{5}, \quad \overline{4}^{-1}=\overline{2}, \quad \overline{5}^{-1}=\overline{3}, \quad \overline{6}^{-1}=\overline{6}
$$

Check that, for example, $\overline{2} \cdot \overline{4}=\overline{1}$.
(b) Does every nonzero element in \mathbb{Z}_{12} have a multiplicative inverse?
(c) Formulate a conjecture about which elements in \mathbb{Z}_{12} will have a multiplicative inverse and which won't by considering the case of \mathbb{Z}_{4} and \mathbb{Z}_{6}.
(d) Can you generalize your conjecture to \mathbb{Z}_{n} for any $n \in \mathbb{N}, n \geq 2$?

Solution: If $\operatorname{gcd}(x, n) \neq 1$, then x will not have a multiplicative inverse in \mathbb{Z}_{n}.
Have students reach this conjecture on their own. It might help if the construct the multiplication tables for \mathbb{Z}_{4} and \mathbb{Z}_{6} and see which elements have multiplicative inverses.
(e) Find the multiplicative inverse of $7 \bmod 31$. (Hint: Use the Euclidean Algorithm to solve $7 x+31 y=1$ for integers $(x, y))$.
Solution:

$$
\begin{aligned}
31 & =7 \cdot 4+3 \\
7 & =3 \cdot 2+1 \\
3 & =1 \cdot 3+0
\end{aligned}
$$

Therefore, going backward, we find $1=7-2 \cdot 3=7-2(31-7 \cdot 4)=7 \cdot 9+31 \cdot(-2)$. Thus, $\overline{7}^{-1}=\overline{9}$.
4. For $(a, b),(c, d) \in \mathbb{R}^{2}$ define $(a, b) \simeq(c, d)$ to mean $a^{2}+b^{2}=c^{2}+d^{2}$. Prove that \simeq is an equivalence relation in \mathbb{R}^{2}, i.e. prove that it satisfies reflexivity, symmetry and transitivity.

Solution:

Reflexivity: We need to show $(a, b) \simeq(a, b) \forall(a, b) \in \mathbb{R}^{2}$. This is clear, since it is equivalent to $a^{2}+b^{2}=a^{2}+b^{2}$.

Symmetry: We need to show that if $(a, b) \simeq(c, d)$ then $(c, d) \simeq(a, b)$. This is immediately evident using the definition of \simeq and the symmetry of " $=$ ".

Transitivity: We need to show that if $(a, b) \simeq(c, d)$ and $(c, d) \simeq(e, f)$, then $(a, b) \simeq$ (e, f). Assume $(a, b) \simeq(c, d)$ and $(c, d) \simeq(e, f)$, then, by definition, $a^{2}+b^{2}=c^{2}+d^{2}$ and $c^{2}+d^{2}=e^{2}+f^{2}$. By transitivity of " $=$ " this implies $a^{2}+b^{2}=e^{2}+f^{2}$, which in its turn means that $(a, b) \simeq(e, f)$.
5. Let S be a set with an equivalence relation \simeq, and let $[a]$ denote the class of a (sometimes denoted as \bar{a}). Recall the Theorem: We have $[a]=[b]$ if and only if $[a] \cap[b] \neq \emptyset$.

For $(a, b),(c, d) \in \mathbb{R}^{2}$ define the equivalence relation $(a, b) \simeq(c, d)$ by: $a^{2}+b^{2}=c^{2}+d^{2}$. Use the Theorem to prove:

$$
\text { a. }[(0,2)]=[(1, \sqrt{3})] \quad \text { b. }[(0,2)] \cap[(1,1)]=\emptyset
$$

Solution:

a. Note that $0^{2}+2^{2}=1^{2}+(\sqrt{3})^{2}$, therefore, $(0,2) \simeq(1, \sqrt{3})$. By definition of equivalence class, this implies that $(1, \sqrt{3}) \in[(0,2)]$. Thus, $(1, \sqrt{3}) \in[(0,2)] \cap[(1, \sqrt{3})]$, in particular, $[(0,2)] \cap[(1, \sqrt{3})] \neq \emptyset$. The above theorem implies that $[(0,2)]=[(1, \sqrt{3})]$.
b. Note that $0^{2}+2^{2} \neq 1^{2}+1^{2}$, therefore, $(0,2) \nsim(1,1)$. By definition of equivalence class, this implies that $(1,1) \notin[(0,2)]$ and therefore $[(0,2)] \neq[(1,1)]$.

The theorem contains a biconditional statement, one of the directions asserts that if $[a] \cap[b] \neq \emptyset$, then $[a]=[b]$. The contrapositive of this statement is as follows. "If $[a] \neq[b]$, then $[a] \cap[b]=\emptyset$."

Since we have shown that $[(0,2)] \neq[(1,1)]$, this implies $[(0,2)] \cap[(1,1)]=\emptyset$.

