1. Find the number N such that $\forall n>N$ we have an inequality

$$
\left|\frac{3 n-1}{n+1}-3\right|<\varepsilon
$$

for given ε as follows:
(Sol) $\forall \varepsilon>0, \exists N=\frac{4}{\varepsilon}$ such that $\forall n \geq N$,

$$
\left|\frac{3 n-1}{n+1}-3\right|=\left|\frac{3 n-1-3 n-3}{n+1}\right|=\left|\frac{-4}{n+1}\right|=\frac{4}{n+1}<\frac{4}{n}<\frac{4}{N}=\varepsilon
$$

(1) $\varepsilon=0.1 .: N=40$, that is, for all $n \geq 40,\left|\frac{3 n-1}{n+1}-3\right|<\varepsilon$.
(2) $\varepsilon=0.01 .: N=400$.
(3) $\varepsilon=1 \times 10^{-5} .: N=4 \times 10^{5}$.
2. By using the formal definition of the limit of the sequence prove the following:
(1) $\lim _{n \rightarrow \infty}\left(c+\frac{1}{n}\right)=c$ where c is a real number.

Proof. $\forall \varepsilon>0, \exists N=1 / \varepsilon$ such that $\forall n>N$,

$$
\left|\left(c+\frac{1}{n}\right)-c\right|=\frac{1}{n}<\frac{1}{N}=\frac{1}{\frac{1}{\varepsilon}}=\varepsilon
$$

(2) $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n+2}}=0$.

Proof. $\forall \varepsilon>0, \exists N=1 / \varepsilon^{2}$ such that $\forall n>N$,

$$
\left|\frac{1}{\sqrt{n+2}}-0\right|<\frac{1}{\sqrt{n}}<\frac{1}{\sqrt{N}}=\frac{1}{\sqrt{\frac{1}{\varepsilon^{2}}}}=\varepsilon
$$

(3) $\lim _{n \rightarrow \infty} \frac{n^{2}-1}{n^{2}+1}=1$.

Proof. $\forall \varepsilon>0, \exists N=\sqrt{2 / \varepsilon}$ such that $\forall n>N$,

$$
\left|\frac{n^{2}-1}{n^{2}+1}-1\right|=\frac{2}{n^{2}+1}<\frac{2}{n^{2}}<\frac{2}{N^{2}}=\frac{2}{\left(\sqrt{\frac{2}{\varepsilon}}\right)^{2}}=\varepsilon
$$

(4) $\lim _{n \rightarrow \infty} 3+\frac{(-1)^{n+1}}{n}=3$.

Proof. $\forall \varepsilon>0, \exists N=1 / \varepsilon$ such that $\forall n>N$,

$$
\left|3+\frac{(-1)^{n+1}}{n}-3\right|=\left|\frac{(-1)^{n+1}}{n}\right|=\frac{1}{n}<\frac{1}{N}=\frac{1}{\frac{1}{\varepsilon}}=\varepsilon
$$

3. Proposition: An upper bound b of a nonempty set $S \subseteq \mathbb{R}$ is the supremum of S if and only if $\forall \varepsilon>0, \exists s \in S$ such that $b-\varepsilon<s$.

By using the proposition, prove the following statement.

Suppose that $S \subseteq \mathbb{R}$ is bounded above and that $b \in \mathbb{R}$ is an upper bound of S. Then $b=\sup S$ if and only if there exists a sequence $\left(x_{n}\right)$ of elements in S converging to b.

Proof. (\Rightarrow) Assume that $b=\sup S$. By the proposition, for any $n \in \mathbb{N}, \exists x_{n} \in S$ such that

$$
b-\frac{1}{n}<x_{n} .
$$

Also, since b is an upper bound of $S, x_{n} \leq b$. Thus $b-\frac{1}{n}<x_{n} \leq b<b+\frac{1}{n}$, which implies that $\left|x_{n}-b\right|<\frac{1}{n}$. By the definition of convergence of limit, $\forall \varepsilon>0, \exists N=1 / \varepsilon$ such that $\forall n>N$, $\left|x_{n}-b\right|<\frac{1}{n}<\frac{1}{N}=\varepsilon$. Therefore, the sequence $\left(x_{n}\right)$ converges to b as required.
(\Leftarrow) Suppose that there is a sequence $\left(x_{n}\right)$ in S such that $\lim _{n \rightarrow \infty} x_{n}=b$. Then, by the definition of convergence of limit, for any $\varepsilon>0, \exists N \in \mathbb{N}$ such that $\left|x_{N}-b\right|<\varepsilon$. So from this inequality, we have $-\varepsilon<x_{N}-b<\varepsilon$. So, in particular, we can get $b-\varepsilon<x_{N}$. Then, by the proposition, $b=\sup S$.
4. Suppose that $S \subseteq \mathbb{R}$ is nonempty and bounded above and let $-S=\{-x \mid x \in S\}$. Prove that $\inf (-S)=-\sup S$.

Proof. To show that $-S$ is bounded below, let u be an upper bound of S, that is, $x \leq u$ for all $x \in S$. Then, $-x \geq-u$ for all $x \in S$. Thus, $-u$ is less than or equal to every element in a set $-S$. Therefore, there exists a lower bound $-u$ of $-S$. $-S$ is bounded below.
Now, let's show that $\inf (-S)=-\sup (S)$. Let $a \in \mathbb{R}$ be a lower bound of $-S$. Then, $a \leq-x$ for all $x \in S$. Then, multiplying by -1 on both sides gives $x \leq-a$ for all $x \in S$. Thus $-a$ is an upper bound of S. Since $\sup S$ is a least upper bound, $\sup S \leq-a$. So $a \leq-\sup S$. Since a is any arbitrary lower bound of $-S$ and $-\sup S$ is greater than or equal to a, by the definition of infimum, $-\sup S=\inf (-S)$.
5. Let $s_{n}=n!/ n^{n}$ for all $n \in \mathbb{N} \backslash\{0\}$. Prove that $\lim _{n \rightarrow \infty} s_{n}=0$.

Proof. The sequence s_{n} can be written as a product of fractions,

$$
s_{n}=\left(\frac{1}{n}\right)\left(\frac{2}{n}\right) \cdots\left(\frac{n}{n}\right) .
$$

Note that each fraction is less than or equal to 1 . So we have $\left|s_{n}-0\right|=s_{n} \leq\left(\frac{1}{n}\right) \times 1^{n-1}=\left(\frac{1}{n}\right)$. Therefore, $\forall \varepsilon>0, \exists N=\varepsilon^{-1}$ such that $\forall n>N,\left|s_{n}-0\right|<1 / n<1 / N=\varepsilon$. That is, by the definition of convergence of limit, $\lim _{n \rightarrow \infty} s_{n}=0$.
6. Let A and B be nonempty bounded subsets of \mathbb{R} and let $M=\{a \cdot b: a \in A$ and $b \in B\}$. Prove or disprove (provide a counterexample) that $\sup M=(\sup A) \cdot(\sup B)$.

It is not true. A countexample would be $A=\{x \in \mathbb{R} \mid-2 \leq x<1\}$ and $B=\{x \in \mathbb{R} \mid-3 \leq x<1\}$.
7. Prove that if $\lim _{n \rightarrow \infty} a_{n}=1$, then $\lim _{n \rightarrow \infty}\left(1+a_{n}\right)^{-1}=1 / 2$.

Proof. Because $\lim _{n \rightarrow \infty} a_{n}=1$, by the definition of limit, for $\varepsilon>0$ there exists N_{1} such that for all $n>N_{1}\left|a_{n}-1\right|<\varepsilon$. Also, for $\varepsilon=1$, there exists N_{2} such that for all $n>N_{2},\left|a_{n}-1\right|<\varepsilon$ which implies $a_{n}>0$. Thus $\forall \varepsilon>0, \exists N=\max \left\{N_{1}, N_{2}\right\}$ such that for all $n>N$,

$$
\left|\frac{1}{1+a_{n}}-\frac{1}{2}\right|=\left|\frac{2-1-a_{n}}{2\left(1+a_{n}\right)}\right|=\frac{\left|1-a_{n}\right|}{2\left(1+a_{n}\right)}<\left|1-a_{n}\right|<\varepsilon
$$

Therefore, $\lim _{n \rightarrow \infty}\left(1+a_{n}\right)^{-1}=1 / 2$.

