problem 1. Let S be a set. Define a function $f: S \rightarrow \mathbb{R}$ to be a topped out on S if $\exists z \in \mathbb{R}$ such that $\forall s \in S$,

$$
f(s)+2 \leq z
$$

(a) Suppose $S=\{0,1,2\}$. Draw a picture of a function which is topped out on $\{0,1,2\}$.

Answer: Any function will do.
(b) Suppose $S=\{0,1,2\}$. Is it possible for a function $f:\{0,1,2\} \rightarrow \mathbb{R}$ to not be topped out on $\{0,1,2\}$?

Answer: Given any function f, take z to be the max value in the set

$$
\{f(0)-2, f(1)-2, f(2)-2\}
$$

(c) Suppose $S=\mathbb{R}$. Draw a picture of a function which is topped out on \mathbb{R}.

Answer: The graph of any bounded function, e.g., a constant function.
(d) Suppose $S=\mathbb{R}$. Draw a picture of a function which is not topped out on \mathbb{R}.

Answer: The graph of any linear function with non-zero slope.
(e) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are each topped out on \mathbb{R}. Prove that

$$
\begin{aligned}
f+g: \mathbb{R} & \longrightarrow \mathbb{R} \\
x & \longmapsto f(x)+g(x)
\end{aligned}
$$

is topped out on \mathbb{R}.

Answer: Let z_{f} and z_{g} be the values determined by the 'topped out condition'. Then

$$
(f(x)+g(x))-2 \leq z_{f}+z_{g}+2 .
$$

problem 2. (Axioms for a 3 point geometry) Undefined terms: point, line and what it means for a point to be on a line. These satisfy the following axioms:

A1: There are exactly 3 points.
A2: Each two distinct points are on exactly one line.
A3: Given two distinct lines, there exists a point which is on each of these two lines.
Answer the following questions.
(a) Write down a model which satisfies these axioms. Clearly state what point, line and on mean in your model.

Answer: See attached.
(b) Write down a model which satisfies axioms A1 and A2, but not A3.

Answer: See attached.
(c) Write down a model which satisfies axioms A1 and A3, but not A2.

Answer: See attached.
(d) Suppose we included the following additional axiom

A4: Not all of the points are on the same line.

Give an example of a model which satisfies A1-A4.

Answer: See attached.
(e) Give an example of a model which satisfies A1-A3, but not A4.

Answer: See attached.
(f) (Optional) Prove by contradiction that any model satisfying axioms A1 and A2 must have at least some lines.

Answer: Suppose there are zero lines in a model satisfying A1 and A2. Let z_{1}, z_{2} be points, which exist by A1. Then there are no line with z_{1} and z_{2} on it, this contradicts

A2.
(g) (Optional) Prove by contradiction that any model satisfying axioms A1-A4 cannot have exactly one line.

Answer: If there was one line, then by A4 there would be a point not on that line. This contradicts A2 with that point together with any other point.
(h) (Optional) Prove by contradiction that any model satisfying axioms A1-A4 cannot have exactly two lines.

Answer: Suppose a model had only two line ℓ_{1} and ℓ_{2}. By A4, the line ℓ_{1} does not contain all of the points, but by A3 it contains at least one point. Similarly, ℓ_{2} does not contain all of the points, but it contains at least one point. This implies that ℓ_{1} contains a point z_{1} which is not on ℓ_{2}. Similarly, ℓ_{2} contains a point z_{2} which is not on ℓ_{1}. Since there are only two lines, there is no line between z_{1} and z_{2}. This contradicts A2.

It can be shown that any model satisfying A1-A4 must have exactly 3 lines.

