Recitation 7 Solutions

PROBLEM 1. Prove that if x is a positive real number, then $x + \frac{1}{x} \ge 2$. (hint: Experiment starting from the inequality you want to prove and derive a true statement; then try to work backwards, reversing your argument).

Proof. Since the square of any real number is nonnegative, we have

$$\begin{aligned} &(x-1)^2 \ge 0\\ &x^2-2x+1 \ge 0\\ &x^2+1 \ge 2x\\ &x+\frac{1}{x} \ge 2 \end{aligned} \qquad (\text{dividing both sides by the positive real number } x). \end{aligned}$$

PROBLEM 2.

1. To prove $A \Longrightarrow B$ by contradiction, what do you assume (for the purpose of deriving a contradiction)?

Answer. One assumes: A and not(B).

2. Prove that if $a, b \in \mathbb{Z}$, then $a^2 - 4b \neq 2$. (hint: in trying to derive a contradiction, first show that a is even).

Proof. Suppose that there exists $a, b \in \mathbb{Z}$ such that $a^2 - 4b = 2$. Then $a^2 = 4b + 2 = 2(2b + 1)$. So a^2 is even. This implies that a is also even. So a = 2k for some integer k. Substituting, we find that $(2k)^2 - 4b = 4k^2 - 4b = 2$. Dividing everything by 2 gives $2k^2 - 2b = 2(k^2 - b) = 1$. This is a contradiction (1 is not an even integer!). Therefore if $a, b \in \mathbb{Z}$, then $a^2 - 4b \neq 2$.

PROBLEM 3. Let a and b be real numbers. Consider the statement: if a is less than every real number greater than b, then $a \leq b$.

1. State the contrapositive.

Answer. If a > b, then a is larger than some real number c greater than b.

2. Prove the statement (hint: how can you construct a number between a and b?)

Proof. We prove the contrapositive. Suppose that a > b. Let $c = \frac{a+b}{2}$. Since c is the average of a and b it should be clear that a > c > b. To prove this formally, note that $c = \frac{a+b}{2} > \frac{b+b}{2} = b$ and $c = \frac{a+b}{2} < \frac{a+a}{2} = a$. Since a > c > b, this proves the contrapositive (and hence the original statement).

PROBLEM 4. Consider the statement

A: There do not exist natural numbers m and n such that

$$\frac{4}{5} = \frac{1}{m} + \frac{1}{n}.$$

(a) Write down the negation of the statement A.

Answer. The negation is simply: There exist natural numbers m and n such that

$$\frac{4}{5} = \frac{1}{m} + \frac{1}{n}.$$

- (b) Assume the statement in (a). We will consider various cases for m and n and show that each case is impossible.
 - (i) Consider the following case:

Case I: $m \ge 3$ and $n \ge 3$.

Show that this case is impossible (hint: how large can $\frac{1}{m} + \frac{1}{n}$ be?)

Proof. Case I: $m \ge 3$ and $n \ge 3$. Since $m \ge 3$ and $n \ge 3$, we have $\frac{1}{m} \le \frac{1}{3}$ and $\frac{1}{n} \le \frac{1}{3}$. Then $\frac{1}{m} + \frac{1}{n} \le \frac{2}{3}$. Note that $\frac{2}{3} < \frac{4}{5}$. So it is impossible that $\frac{1}{m} + \frac{1}{n} = \frac{4}{5}$.

(ii) What cases for m and n remain? Show that each of the remaining cases is also impossible.

Proof. If m < 3 or n < 3 then one of m or n is equal to 1 or 2. We consider these two cases.

Case II: One of m or n is equal to 1. In this case $\frac{1}{m} + \frac{1}{n} \ge 1 > \frac{4}{5}$. So it is impossible that $\frac{1}{m} + \frac{1}{n} = \frac{4}{5}$.

Case III: One of *m* or *n* is equal to 2. Without loss of generality, suppose that m = 2. Then $\frac{1}{n} = \frac{4}{5} - \frac{1}{2} = \frac{3}{10},$

which is impossible.

(c) Explain why your work in (b) proves the statement A. Which methods of proof were used here?

Answer. We assumed the negation of A and arrived at a contradiction (in every possible case for m and n). Therefore statement A must be true. This proof combined proof by contradiction with proof by cases.

(d) (Extra) In contrast to what we've proved, a conjecture of Erdös and Straus states that for any integer $n \ge 2$ we can always write

$$\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z},$$

for some $x, y, z \in \mathbb{N}$. To this day, the conjecture is unproven (but it is known for $n < 10^{14}$). Can you see how to write $\frac{4}{5}$ in the above way?

Answer.

$$\frac{4}{5} = \frac{1}{2} + \frac{1}{5} + \frac{1}{10}.$$