Recitation 7 Solutions

Oct. 17, 2013

PROBLEM 1. Prove that if x is a positive real number, then $x+\frac{1}{x} \geq 2$. (hint: Experiment starting from the inequality you want to prove and derive a true statement; then try to work backwards, reversing your argument).

Proof. Since the square of any real number is nonnegative, we have

$$
\begin{aligned}
(x-1)^{2} & \geq 0 \\
x^{2}-2 x+1 & \geq 0 \\
x^{2}+1 & \geq 2 x \\
x+\frac{1}{x} & \geq 2 \quad \text { (dividing both sides by the positive real number } x) .
\end{aligned}
$$

PROBLEM 2.

1. To prove $A \Longrightarrow B$ by contradiction, what do you assume (for the purpose of deriving a contradiction)?

Answer. One assumes: A and $\operatorname{not}(B)$.
2. Prove that if $a, b \in \mathbb{Z}$, then $a^{2}-4 b \neq 2$. (hint: in trying to derive a contradiction, first show that a is even).

Proof. Suppose that there exists $a, b \in \mathbb{Z}$ such that $a^{2}-4 b=2$. Then $a^{2}=4 b+2=$ $2(2 b+1)$. So a^{2} is even. This implies that a is also even. So $a=2 k$ for some integer k. Substituting, we find that $(2 k)^{2}-4 b=4 k^{2}-4 b=2$. Dividing everything by 2 gives $2 k^{2}-2 b=2\left(k^{2}-b\right)=1$. This is a contradiction (1 is not an even integer!). Therefore if $a, b \in \mathbb{Z}$, then $a^{2}-4 b \neq 2$.

PROBLEM 3. Let a and b be real numbers. Consider the statement: if a is less than every real number greater than b, then $a \leq b$.

1. State the contrapositive.

Answer. If $a>b$, then a is larger than some real number c greater than b.
2. Prove the statement (hint: how can you construct a number between a and b ?)

Proof. We prove the contrapositive. Suppose that $a>b$. Let $c=\frac{a+b}{2}$. Since c is the average of a and b it should be clear that $a>c>b$. To prove this formally, note that $c=\frac{a+b}{2}>\frac{b+b}{2}=b$ and $c=\frac{a+b}{2}<\frac{a+a}{2}=a$. Since $a>c>b$, this proves the contrapositive (and hence the original statement).
problem 4. Consider the statement
A : There do not exist natural numbers m and n such that

$$
\frac{4}{5}=\frac{1}{m}+\frac{1}{n}
$$

(a) Write down the negation of the statement A.

Answer. The negation is simply: There exist natural numbers m and n such that

$$
\frac{4}{5}=\frac{1}{m}+\frac{1}{n}
$$

(b) Assume the statement in (a). We will consider various cases for m and n and show that each case is impossible.
(i) Consider the following case:

Case I: $m \geq 3$ and $n \geq 3$.
Show that this case is impossible (hint: how large can $\frac{1}{m}+\frac{1}{n}$ be?)
Proof. Case I: $m \geq 3$ and $n \geq 3$. Since $m \geq 3$ and $n \geq 3$, we have $\frac{1}{m} \leq \frac{1}{3}$ and $\frac{1}{n} \leq \frac{1}{3}$. Then $\frac{1}{m}+\frac{1}{n} \leq \frac{2}{3}$. Note that $\frac{2}{3}<\frac{4}{5}$. So it is impossible that $\frac{1}{m}+\frac{m}{n}=\frac{4}{5}$.
(ii) What cases for m and n remain? Show that each of the remaining cases is also impossible.

Proof. If $m<3$ or $n<3$ then one of m or n is equal to 1 or 2 . We consider these two cases.

Case II: One of m or n is equal to 1 . In this case $\frac{1}{m}+\frac{1}{n} \geq 1>\frac{4}{5}$. So it is impossible that $\frac{1}{m}+\frac{1}{n}=\frac{4}{5}$.

Case III: One of m or n is equal to 2 . Without loss of generality, suppose that $m=2$. Then

$$
\frac{1}{n}=\frac{4}{5}-\frac{1}{2}=\frac{3}{10}
$$

which is impossible.
(c) Explain why your work in (b) proves the statement A. Which methods of proof were used here?

Answer. We assumed the negation of A and arrived at a contradiction (in every possible case for m and n). Therefore statement A must be true. This proof combined proof by contradiction with proof by cases.
(d) (Extra) In contrast to what we've proved, a conjecture of Erdös and Straus states that for any integer $n \geq 2$ we can always write

$$
\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}
$$

for some $x, y, z \in \mathbb{N}$. To this day, the conjecture is unproven (but it is known for $n<10^{14}$). Can you see how to write $\frac{4}{5}$ in the above way?

Answer.

$$
\frac{4}{5}=\frac{1}{2}+\frac{1}{5}+\frac{1}{10}
$$

