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1. proposition: The sum of the first n odd numbers is n2.

a. Try some examples: 1 + 3
?
= 22, 1 + 3 + 5

?
= 32, etc.

b. State the Proposition formally in symbols, making clear what is the nth case P (n). How to write a
formula for the nth odd number? Include implicit quantifiers: for which n should the Proposition hold?

solution: For all n ≥ 1, we have P (n): 1 + 3 + 5 + · · ·+ (2n−1) = n2.

c. Prove the Proposition by mathematical induction.

• Base Case (Anchor): Prove P (1) directly. solution: P (1) : 1 = 12 is obvious.

• Induction Step (Chain Step): Start by writing the inductive hypothesis at the top, then write the
inductive conclusion at the bottom, then work on the body of the proof.

– Inductive Hypothesis: For some specific n, we assume the formula is true for the case P (n).

solution: We assume P (n): 1 + 3 + 5 + · · ·+ (2n−1) = n2.

– Body of Proof: Use the inductive hypothesis and algebra to deduce the inductive conclusion.

solution: Note that the (n+1)st odd number is 2(n+1)−1 = 2n+1. We have:

1 + 3 + 5 + · · ·+ (2n+1) = [1 + 3 + 5 + · · ·+ (2n−1)] + (2n+1)

= n2 + (2n+1) by the inductive hypothesis

= n2 + 2n + 1 = (n+1)2

– Inductive conclusion: The formula is true for the next case P (n+1).

solution: Therefore we know P (n+1): 1 + 3 + 5 + · · ·+ (2(n+1)−1) = (n+1)2.

• Explain why the Anchor and Chain Steps imply the final conclusion: P (n) is true for all n ≥ 1.

solution: We know P (0) is true, and P (0)⇒ P (1), so we know P (1) is true. Also P (1)⇒ P (2),
so P (2) is true. We can continue similarly up to any desired P (n).

d. There is beautiful pictorial demonstration of the Proposition: an n×n square can be dissected into
L-shaped pieces of area 1, 3, 5, . . . , 2n−1. Draw this on the back. Could it be made into a formal proof?

solution:
We can make this into a bijective proof by dissecting the set

[n]× [n] = {(i, j) ∈ N×N | 1 ≤ i, j ≤ n}

into disjoint subsets S1, S2, . . . , Sn, where:

Sk = {(k, 1), (k, 2), . . . , (k, k)} ∪ {(1, k), (2, k), . . . , (k, k)},

with |Sk| = 2k−1. Then: [n]×[n] = S1 ∪ · · · ∪ Sn, so:

n2 = |[n]×[n]| = |S1|+ · · ·+ |Sn| =
n∑

k=1

(2k−1).



2. The Fibonacci Numbers are a sequence of whole numbers F1, F2, F3, . . . starting with F1 = F2 = 1,
and conbtinuing by the recursive rule: Fn = Fn−1 + Fn−2 for n ≥ 3:

F1 = 1, F2 = 1, F3 = 1 + 1 = 2, F4 = 1 + 2 = 3, F5 = 2 + 3 = 5, F6 = 3 + 5 = 8, . . .

a. Make a table of the Fibonacci numbers:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fn 1 1 2 3 5 813 21 34 55 89 144 233 377 610

What is the pattern of odd versus even Fn’s?

b. proposition: Fn is even when n = 3m is a multiple of 3. Try proof by induction: why is it hard?

solution: This is hard because F3(m+1) = F3m+3 does not immediately precede F3m, so we cannot use
the inductive hypothesis right away. We must argue as follows:

Anchor: For m = 1, clearly F3 = 2 is even. Chain: Assume F3m = 2k, an even number. Then:

F3m+3 = F3m+2 + F3m+1 = (F3m+1 + F3m) + F3m+1 = 2F3m+1 + F3m = 2F3m+1 + 2k,

which shows F3m+3 is even.

c. Reformulate: For any m ≥ 1, F3m−1 and F3m−2 are odd, and F3m is even. Prove this by induction
on the variable m. Does this work better?

solution: Anchor: For m = 1 we have three base numbers: F3−2 = F1 = 1 and F3−1 = F2 = 1 are
odd, and F3 = 2 is even.

Chain: Assume F3m−2, F3m−1 are odd, F3m is even. We must examine three succeeding numbers:
F3(m+1)−2 = F3m+1, F3(m+1)−1 = F3m+2, and F3(m+1) = F3m+3.

F3m+1 = F3m + F3m−1 = even + odd = odd

F3m+2 = F3m+1 + F3m = odd + even = odd

F3m+3 = F3m+2 + F3m+1 = odd + odd = even.

The first line uses only the inductive hypothesis; the second line uses the first line and the inductive
hypothesis; the third line uses only the first two lines.

This proof has about the same complexity as in (b), but it proves a stronger result.

d. Challenge problem: For any whole number `, the Fibonacci number F` evenly divides Fn whenever
` divides n. That is, for any `,m ∈ N, we have that F`m is a multiple of F`. Start with ` = 4, m ≥ 1.



3. The product of two functions fg is defined by (fg)(x) = f(x)g(x). (Do not confuse fg with the
composition f ◦ g.) In calculus, the Product Rule gives the derivative: (fg)′ = f ′g + fg′. This extends
to a rule for the product of three functions:

(fgh)′ = f ′gh + fg′h + fgh′.

For example:[
(x+1)(x2)(sinx)

]′
= (x+1)′(x2)(sinx) + (x+1)(x2)′(sinx) + (x+1)(x2)(sinx)′

= (1)(x2)(sinx) + (x+1)(2x)(sinx) + (x+1)(x2)(cosx).

In fact, we have a Product Rule for any number of functions:

proposition: For any differentiable real functions f1, . . . , fn, the derivative of their product is:

(f1f2 · · · fn)′ = (f ′1f2· · ·fn) + (f1f
′
2· · ·fn) + · · · + (f1f2· · ·f ′n).

Prove this by induction, assuming the original, ordinary Product Rule.

solution: Since the statement makes no sense for n = 0, 1, the base case is the orginal Product Rule
for n = 2: (f1f2)

′ = f ′1f2 + f1f
′
2.

Chain: Assume the formula for a n functions: (f1f2 · · · fn)′ = (f ′1f2· · ·fn) + · · · + (f1f2· · ·f ′n).
To compute the derivative for n+1 functions, apply the original Product Rule (fg)′ = f ′g + fg′ to the
functions: f = f1f2 · · · fn and g = fn+1:

(f1 · · · fnfn+1)
′ = (fg)′ = f ′g + fg′

= (f1f2 · · · fn)′fn+1 + (f1f2 · · · fn)f ′n+1

= [ (f ′1f2· · ·fn) + · · · + (f1f2· · ·f ′n) ] fn+1 + (f1f2 · · · fn)f ′n+1

= (f ′1f2· · ·fnfn+1) + · · · + (f1f2· · ·f ′nfn+1) + (f1f2 · · · fnf ′n+1).

Here we used the inductive hypothesis for the third equality. We obtain the right-hand side of the
desired formula for (n+1) functions, so we are done.

4. Consider the inequality: n2 ≤ 2n, where n is a whole number.

a. Try this for n = 1, . . . , 7 to see when the inequality holds.

b. Prove the inequality by induction. Hint: Prove the equivalent equality n ≤
√

2
n
. Start with the

correct base case.

solution: First we prove n ≤
√

2
n
. Start with the base n = 4, for which we have n = 4 =

√
2
4

=
√

2
n
.

For the Chain step, assume n ≤
√

2
n

for some n ≥ 4, and compute:

n+1 ≤
√

2
n
+1 =

√
2
n
(1+ 1√

2
n ) ≤

√
2
n
(1+ 1√

2
4 ) = 2n(54) ≤

√
2
n+1

,

Here we used that n ≥ 4, so 1√
2
n ≤ 1√

2
4 = 5

4 .

This concludes the induction, so n ≤
√

2
n

for all n ≥ 4. Both sides are positive reals, so we can

square them to get: n2 ≤ (
√

2
n
)2 =

√
2
2n

= 2n for n ≥ 4.


