- **1.** PROPOSITION: The sum of the first n odd numbers is n^2 .
- **a.** Try some examples: $1 + 3 \stackrel{?}{=} 2^2$, $1 + 3 + 5 \stackrel{?}{=} 3^2$, etc.

b. State the Proposition formally in symbols, making clear what is the n^{th} case P(n). How to write a formula for the n^{th} odd number? Include implicit quantifiers: for which n should the Proposition hold?

SOLUTION: For all $n \ge 1$, we have P(n): $1 + 3 + 5 + \dots + (2n-1) = n^2$.

c. Prove the Proposition by mathematical induction.

- Base Case (Anchor): Prove P(1) directly. SOLUTION: $P(1) : 1 = 1^2$ is obvious.
- Induction Step (Chain Step): Start by writing the inductive hypothesis at the top, then write the inductive conclusion at the bottom, then work on the body of the proof.
 - Inductive Hypothesis: For some specific n, we assume the formula is true for the case P(n).

SOLUTION: We assume P(n): $1 + 3 + 5 + \dots + (2n-1) = n^2$.

- Body of Proof: Use the inductive hypothesis and algebra to deduce the inductive conclusion.

SOLUTION: Note that the $(n+1)^{st}$ odd number is 2(n+1)-1 = 2n+1. We have:

$$1+3+5+\dots+(2n+1) = [1+3+5+\dots+(2n-1)] + (2n+1)$$

= $n^2 + (2n+1)$ by the inductive hypothesis
= $n^2 + 2n + 1 = (n+1)^2$

- Inductive conclusion: The formula is true for the next case P(n+1).

SOLUTION: Therefore we know P(n+1): $1 + 3 + 5 + \dots + (2(n+1)-1) = (n+1)^2$.

• Explain why the Anchor and Chain Steps imply the final conclusion: P(n) is true for all $n \ge 1$.

SOLUTION: We know P(0) is true, and $P(0) \Rightarrow P(1)$, so we know P(1) is true. Also $P(1) \Rightarrow P(2)$, so P(2) is true. We can continue similarly up to any desired P(n).

d. There is beautiful pictorial demonstration of the Proposition: an $n \times n$ square can be dissected into *L*-shaped pieces of area $1, 3, 5, \ldots, 2n-1$. Draw this on the back. Could it be made into a formal proof?

SOLUTION:

(1,1)	(1,2)	(1,3)	(1,4)
(2,1)	(2,2)	(2,3)	(2,4)
<mark>(3,1)</mark>	(3,2)	(3,3)	(3,4)
<mark>(4,1)</mark>	(4,2)	(4,3)	(4,4)

We can make this into a bijective proof by dissecting the set

$$[n] \times [n] = \{(i, j) \in \mathbb{N} \times \mathbb{N} \mid 1 \le i, j \le n\}$$

into disjoint subsets S_1, S_2, \ldots, S_n , where:

$$S_k = \{(k,1), (k,2), \dots, (k,k)\} \cup \{(1,k), (2,k), \dots, (k,k)\},\$$

with $|S_k| = 2k-1$. Then: $[n] \times [n] = S_1 \cup \cdots \cup S_n$, so:

$$n^{2} = |[n] \times [n]| = |S_{1}| + \dots + |S_{n}| = \sum_{k=1}^{n} (2k-1).$$

2. The *Fibonacci Numbers* are a sequence of whole numbers F_1, F_2, F_3, \ldots starting with $F_1 = F_2 = 1$, and conbtinuing by the recursive rule: $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$:

$$F_1 = 1$$
, $F_2 = 1$, $F_3 = 1 + 1 = 2$, $F_4 = 1 + 2 = 3$, $F_5 = 2 + 3 = 5$, $F_6 = 3 + 5 = 8$,...

a. Make a table of the Fibonacci numbers:

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14
F_n	1	1	2	3	5	813	21	34	55	89	144	233	377	610

What is the pattern of odd versus even F_n 's?

b. PROPOSITION: F_n is even when n = 3m is a multiple of 3. Try proof by induction: why is it hard?

SOLUTION: This is hard because $F_{3(m+1)} = F_{3m+3}$ does not immediately precede F_{3m} , so we cannot use the inductive hypothesis right away. We must argue as follows:

Anchor: For m = 1, clearly $F_3 = 2$ is even. Chain: Assume $F_{3m} = 2k$, an even number. Then:

$$F_{3m+3} = F_{3m+2} + F_{3m+1} = (F_{3m+1} + F_{3m}) + F_{3m+1} = 2F_{3m+1} + F_{3m} = 2F_{3m+1} + 2k_{3m+1} + 2$$

which shows F_{3m+3} is even.

c. Reformulate: For any $m \ge 1$, F_{3m-1} and F_{3m-2} are odd, and F_{3m} is even. Prove this by induction on the variable m. Does this work better?

SOLUTION: Anchor: For m = 1 we have three base numbers: $F_{3-2} = F_1 = 1$ and $F_{3-1} = F_2 = 1$ are odd, and $F_3 = 2$ is even.

Chain: Assume F_{3m-2}, F_{3m-1} are odd, F_{3m} is even. We must examine *three* succeeding numbers: $F_{3(m+1)-2} = F_{3m+1}, F_{3(m+1)-1} = F_{3m+2}$, and $F_{3(m+1)} = F_{3m+3}$.

$$F_{3m+1} = F_{3m} + F_{3m-1} = \text{even} + \text{odd} = \text{odd}$$

$$F_{3m+2} = F_{3m+1} + F_{3m} = \text{odd} + \text{even} = \text{odd}$$

$$F_{3m+3} = F_{3m+2} + F_{3m+1} = \text{odd} + \text{odd} = \text{even}.$$

The first line uses only the inductive hypothesis; the second line uses the first line and the inductive hypothesis; the third line uses only the first two lines.

This proof has about the same complexity as in (b), but it proves a stronger result.

d. Challenge problem: For any whole number ℓ , the Fibonacci number F_{ℓ} evenly divides F_n whenever ℓ divides n. That is, for any $\ell, m \in \mathbb{N}$, we have that $F_{\ell m}$ is a multiple of F_{ℓ} . Start with $\ell = 4, m \ge 1$.

3. The product of two functions fg is defined by (fg)(x) = f(x)g(x). (Do not confuse fg with the composition $f \circ g$.) In calculus, the Product Rule gives the derivative: (fg)' = f'g + fg'. This extends to a rule for the product of three functions:

$$(fgh)' = f'gh + fg'h + fgh'.$$

For example:

$$[(x+1)(x^2)(\sin x)]' = (x+1)'(x^2)(\sin x) + (x+1)(x^2)'(\sin x) + (x+1)(x^2)(\sin x)'$$

= (1)(x²)(sin x) + (x+1)(2x)(sin x) + (x+1)(x²)(cos x).

In fact, we have a Product Rule for any number of functions: PROPOSITION: For any differentiable real functions f_1, \ldots, f_n , the derivative of their product is:

$$(f_1 f_2 \cdots f_n)' = (f'_1 f_2 \cdots f_n) + (f_1 f'_2 \cdots f_n) + \cdots + (f_1 f_2 \cdots f'_n).$$

Prove this by induction, assuming the original, ordinary Product Rule.

SOLUTION: Since the statement makes no sense for n = 0, 1, the base case is the orginal Product Rule for n = 2: $(f_1 f_2)' = f'_1 f_2 + f_1 f'_2$.

Chain: Assume the formula for a *n* functions: $(f_1f_2\cdots f_n)' = (f'_1f_2\cdots f_n) + \cdots + (f_1f_2\cdots f'_n)$. To compute the derivative for n+1 functions, apply the original Product Rule (fg)' = f'g + fg' to the functions: $f = f_1f_2\cdots f_n$ and $g = f_{n+1}$:

$$(f_1 \cdots f_n f_{n+1})' = (fg)' = f'g + fg'$$

= $(f_1 f_2 \cdots f_n)' f_{n+1} + (f_1 f_2 \cdots f_n) f'_{n+1}$
= $[(f'_1 f_2 \cdots f_n) + \cdots + (f_1 f_2 \cdots f'_n)] f_{n+1} + (f_1 f_2 \cdots f_n) f'_{n+1}$
= $(f'_1 f_2 \cdots f_n f_{n+1}) + \cdots + (f_1 f_2 \cdots f'_n f_{n+1}) + (f_1 f_2 \cdots f_n f'_{n+1}).$

Here we used the inductive hypothesis for the third equality. We obtain the right-hand side of the desired formula for (n+1) functions, so we are done.

- 4. Consider the inequality: $n^2 \leq 2^n$, where n is a whole number.
- **a.** Try this for n = 1, ..., 7 to see when the inequality holds.

b. Prove the inequality by induction. Hint: Prove the equivalent equality $n \leq \sqrt{2}^n$. Start with the correct base case.

SOLUTION: First we prove $n \le \sqrt{2}^n$. Start with the base n = 4, for which we have $n = 4 = \sqrt{2}^4 = \sqrt{2}^n$. For the Chain step, assume $n \le \sqrt{2}^n$ for some $n \ge 4$, and compute:

$$n+1 \le \sqrt{2}^n + 1 = \sqrt{2}^n (1 + \frac{1}{\sqrt{2}^n}) \le \sqrt{2}^n (1 + \frac{1}{\sqrt{2}^4}) = 2^n (\frac{5}{4}) \le \sqrt{2}^{n+1},$$

Here we used that $n \ge 4$, so $\frac{1}{\sqrt{2}^n} \le \frac{1}{\sqrt{2}^4} = \frac{5}{4}$.

This concludes the induction, so $n \le \sqrt{2}^n$ for all $n \ge 4$. Both sides are positive reals, so we can square them to get: $n^2 \le (\sqrt{2}^n)^2 = \sqrt{2}^{2n} = 2^n$ for $n \ge 4$.