Math 299 Recitation 8 Oct 24, 2013

1. PROPOSITION: The sum of the first n odd numbers is n2.
a. Try some examples: 1+ 3 L 22, 14+3+5 L 32, etc.

b. State the Proposition formally in symbols, making clear what is the n'' case P(n). How to write a
formula for the n'* odd number? Include implicit quantifiers: for which n should the Proposition hold?

SOLUTION: For all n > 1, we have P(n): 1+3+5+---+ (2n—1) = n?
c. Prove the Proposition by mathematical induction.
e Base Case (Anchor): Prove P(1) directly.  soLuTioN: P(1):1 = 12 is obvious.

e Induction Step (Chain Step): Start by writing the inductive hypothesis at the top, then write the
inductive conclusion at the bottom, then work on the body of the proof.

— Inductive Hypothesis: For some specific n, we assume the formula is true for the case P(n).

SOLUTION: We assume P(n): 1+3+5+ -+ (2n—1) = n?.

— Body of Proof: Use the inductive hypothesis and algebra to deduce the inductive conclusion.
SOLUTION: Note that the (n+1)%* odd number is 2(n+1)—1 = 2n+1. We have:

143454+ 2n+1) = [14+34+5+---4 (2n—1)] + (2n+1)
= n?+4 (2n+1) by the inductive hypothesis
n?+2n+1= (n+1)?

— Inductive conclusion: The formula is true for the next case P(n+1).

SOLUTION: Therefore we know P(n+1): 1 +3+5+ -+ (2(n+1)—1) = (n+1)%

e Explain why the Anchor and Chain Steps imply the final conclusion: P(n) is true for all n > 1.

SOLUTION: We know P(0) is true, and P(0) = P(1), so we know P(1) is true. Also P(1) = P(2),
so P(2) is true. We can continue similarly up to any desired P(n).

d. There is beautiful pictorial demonstration of the Proposition: an n x n square can be dissected into
L-shaped pieces of area 1,3,5,...,2n—1. Draw this on the back. Could it be made into a formal proof?

SOLUTION: We can make this into a bijective proof by dissecting the set

N a2 ft3 s [n] x [n] ={(,7) e NxN | 1 <4,5 <n}

into disjoint subsets 51,59, ...,5,, where:

Sk =A{(k,1),(k,2),...,(k,k)} U {(1,k),(2,k),...,(k,k)},

with |Sg| = 2k—1. Then: [n|x[n] =S U---US,, so:
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n® = |[n]x[n]] = |S1] + -+ [Sal = Y (2k=1).
k=1




2. The Fibonacci Numbers are a sequence of whole numbers Fy, Fb, Fs, ... starting with F; = Fy = 1,
and conbtinuing by the recursive rule: F,, = F,,_1 + F,,_o for n > 3:

=1 F=1 F=1+1=2 F=142=3, F,=2+3=5 F;=3+5=8,...

a. Make a table of the Fibonacci numbers:

n|1/2(3/4|5| 6 [ 7|89 |10 11 |12 |13 | 14
F,1111]2/3]5(813]21|34|55|89]|144|233|377|610

What is the pattern of odd versus even F,,’s?
b. PROPOSITION: F), is even when n = 3m is a multiple of 3. Try proof by induction: why is it hard?

SOLUTION: This is hard because F3(m+1) = Fam+3 does not immediately precede F3,,, so we cannot use
the inductive hypothesis right away. We must argue as follows:

Anchor: For m = 1, clearly F3 = 2 is even. Chain: Assume Fj,, = 2k, an even number. Then:
Fymts = Fyma2 + Fsmi1 = (Fsmt1 + F3m) + Fymy1 = 2F3m41 + Fam = 2F3m41 + 2K,
which shows F3,,13 is even.

c. Reformulate: For any m > 1, Fs,,—1 and F3,, o are odd, and F3,, is even. Prove this by induction
on the variable m. Does this work better?

SOLUTION: Anchor: For m = 1 we have three base numbers: F5_o = F; = 1 and F3_1 = F5, = 1 are
odd, and F3 = 2 is even.
Chain: Assume Fj,, o, F3,,—1 are odd, Fj,, is even. We must examine three succeeding numbers:

F3mi1)—2 = F3m+1, F3(my1)—1 = F3m+2, and F3(41) = Fmats.

Fsmi1 = Fs3p+F3-1 = even4+odd = odd
Fsmio = F3pp1+F3m = odd+even = odd
Fsmys = Fspio+4+ Fyne1 = odd+odd = even.

The first line uses only the inductive hypothesis; the second line uses the first line and the inductive
hypothesis; the third line uses only the first two lines.
This proof has about the same complexity as in (b), but it proves a stronger result.

d. Challenge problem: For any whole number ¢, the Fibonacci number Fy evenly divides F,, whenever
¢ divides n. That is, for any ¢, m € N, we have that Fy,, is a multiple of Fj. Start with £ =4, m > 1.



3. The product of two functions fg is defined by (fg)(z) = f(z)g(z). (Do not confuse fg with the
composition f o g.) In calculus, the Product Rule gives the derivative: (fg) = f'g + f¢’. This extends
to a rule for the product of three functions:

(fgh)' = figh+ fg'h+ fgh'.
For example:

[(z+1)(2%)(sin a:)]/ = (2+1)(2?)(sinx) + (z+1)(2?)(sinx) + (z+1)(2?)(sin z)’
= (1) (2®)(sinx) + (z+1)(2z)(sinz) + (z+1)(2?)(cos z).

In fact, we have a Product Rule for any number of functions:

PROPOSITION: For any differentiable real functions fi, ..., f,, the derivative of their product is:

(fifor-fo) = (fifor--fn) + (frfo - fn) + -+ (fifar 1)

Prove this by induction, assuming the original, ordinary Product Rule.

SOLUTION: Since the statement makes no sense for n = 0, 1, the base case is the orginal Product Rule

for n=2: (fif2) = fifa+ f1f5.
Chain: Assume the formula for a n functions: (fifa---fn) = (fifor-fu) + -+ + (fifer-fl)-
To compute the derivative for n+1 functions, apply the original Product Rule (fg)' = f'g + f¢' to the

functions: f = fifo- - fn and g = fri1:
(fl"'fnfn—&-l), = (fg ) flg+ fd'
= (flf2 fn) fn—i—l + (f1f2 fn)fn+1
[(fiforfu) + -+ (frfer i) ] fner + (fifo - fo) frgs
(fifer - fuforr) + -+ (fufor - flifusr) + (fifo-o fufrir)

Here we used the inductive hypothesis for the third equality. We obtain the right-hand side of the
desired formula for (n+1) functions, so we are done.

4. Consider the inequality: n? < 2", where n is a whole number.

a. Try this for n =1,...,7 to see when the inequality holds.

b. Prove the inequality by induction. Hint: Prove the equivalent equality n < +/2". Start with the
correct base case.

SOLUTION: First we prove n < \/Qn Start with the base n = 4, for which we have n = 4 = ﬁ4 = \/én
For the Chain step, assume n < V2" for some n > 4, and compute:

< V2= V2 () < V2 ) =2 (3 < v

1 1 _5
Here we used that n > 4, so Nek < Nl

This concludes the induction, so n < \/ﬁn for all n > 4. Both sides are positive reals, so we can
square them to get: n? < (\/En)2 = ﬂzn = 2" for n > 4.



