1. Proposition: The sum of the first n odd numbers is n^{2}.
a. Try some examples: $1+3 \stackrel{?}{=} 2^{2}, 1+3+5 \stackrel{?}{=} 3^{2}$, etc.
b. State the Proposition formally in symbols, making clear what is the $n^{\text {th }}$ case $P(n)$. How to write a formula for the $n^{\text {th }}$ odd number? Include implicit quantifiers: for which n should the Proposition hold?

SOLUTION: For all $n \geq 1$, we have $P(n)$: $1+3+5+\cdots+(2 n-1)=n^{2}$.
c. Prove the Proposition by mathematical induction.

- Base Case (Anchor): Prove $P(1)$ directly. solution: $P(1): 1=1^{2}$ is obvious.
- Induction Step (Chain Step): Start by writing the inductive hypothesis at the top, then write the inductive conclusion at the bottom, then work on the body of the proof.
- Inductive Hypothesis: For some specific n, we assume the formula is true for the case $P(n)$. solution: We assume $P(n): 1+3+5+\cdots+(2 n-1)=n^{2}$.
- Body of Proof: Use the inductive hypothesis and algebra to deduce the inductive conclusion. SOLUTION: Note that the $(n+1)^{\text {st }}$ odd number is $2(n+1)-1=2 n+1$. We have:

$$
\begin{aligned}
1+3+5+\cdots+(2 n+1) & =[1+3+5+\cdots+(2 n-1)]+(2 n+1) \\
& =n^{2}+(2 n+1) \quad \text { by the inductive hypothesis } \\
& =n^{2}+2 n+1=(n+1)^{2}
\end{aligned}
$$

- Inductive conclusion: The formula is true for the next case $P(n+1)$.

SOLUTION: Therefore we know $P(n+1): 1+3+5+\cdots+(2(n+1)-1)=(n+1)^{2}$.

- Explain why the Anchor and Chain Steps imply the final conclusion: $P(n)$ is true for all $n \geq 1$.
solution: We know $P(0)$ is true, and $P(0) \Rightarrow P(1)$, so we know $P(1)$ is true. Also $P(1) \Rightarrow P(2)$, so $P(2)$ is true. We can continue similarly up to any desired $P(n)$.
d. There is beautiful pictorial demonstration of the Proposition: an $n \times n$ square can be dissected into L-shaped pieces of area $1,3,5, \ldots, 2 n-1$. Draw this on the back. Could it be made into a formal proof?

SOLUTION:

$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$
$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$
$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$
$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$

We can make this into a bijective proof by dissecting the set

$$
[n] \times[n]=\{(i, j) \in \mathbb{N} \times \mathbb{N} \mid 1 \leq i, j \leq n\}
$$

into disjoint subsets $S_{1}, S_{2}, \ldots, S_{n}$, where:

$$
S_{k}=\{(k, 1),(k, 2), \ldots,(k, k)\} \cup\{(1, k),(2, k), \ldots,(k, k)\},
$$

with $\left|S_{k}\right|=2 k-1$. Then: $[n] \times[n]=S_{1} \cup \cdots \cup S_{n}$, so:

$$
n^{2}=|[n] \times[n]|=\left|S_{1}\right|+\cdots+\left|S_{n}\right|=\sum_{k=1}^{n}(2 k-1) .
$$

2. The Fibonacci Numbers are a sequence of whole numbers $F_{1}, F_{2}, F_{3}, \ldots$ starting with $F_{1}=F_{2}=1$, and conbtinuing by the recursive rule: $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 3$:

$$
F_{1}=1, \quad F_{2}=1, \quad F_{3}=1+1=2, \quad F_{4}=1+2=3, \quad F_{5}=2+3=5, \quad F_{6}=3+5=8, \ldots
$$

a. Make a table of the Fibonacci numbers:

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14
F_{n}	1	1	2	3	5	813	21	34	55	89	144	233	377	610

What is the pattern of odd versus even F_{n} 's?
b. proposition: F_{n} is even when $n=3 m$ is a multiple of 3 . Try proof by induction: why is it hard?

SOLUTION: This is hard because $F_{3(m+1)}=F_{3 m+3}$ does not immediately precede $F_{3 m}$, so we cannot use the inductive hypothesis right away. We must argue as follows:
Anchor: For $m=1$, clearly $F_{3}=2$ is even. Chain: Assume $F_{3 m}=2 k$, an even number. Then:

$$
F_{3 m+3}=F_{3 m+2}+F_{3 m+1}=\left(F_{3 m+1}+F_{3 m}\right)+F_{3 m+1}=2 F_{3 m+1}+F_{3 m}=2 F_{3 m+1}+2 k,
$$

which shows $F_{3 m+3}$ is even.
c. Reformulate: For any $m \geq 1, F_{3 m-1}$ and $F_{3 m-2}$ are odd, and $F_{3 m}$ is even. Prove this by induction on the variable m. Does this work better?

SOlution: Anchor: For $m=1$ we have three base numbers: $F_{3-2}=F_{1}=1$ and $F_{3-1}=F_{2}=1$ are odd, and $F_{3}=2$ is even.

Chain: Assume $F_{3 m-2}, F_{3 m-1}$ are odd, $F_{3 m}$ is even. We must examine three succeeding numbers: $F_{3(m+1)-2}=F_{3 m+1}, F_{3(m+1)-1}=F_{3 m+2}$, and $F_{3(m+1)}=F_{3 m+3}$.

$$
\begin{aligned}
& F_{3 m+1}=F_{3 m}+F_{3 m-1}=\text { even }+ \text { odd }=\text { odd } \\
& F_{3 m+2}=F_{3 m+1}+F_{3 m}=\text { odd }+ \text { even }=\text { odd } \\
& F_{3 m+3}=F_{3 m+2}+F_{3 m+1}=\text { odd }+ \text { odd }=\text { even. } .
\end{aligned}
$$

The first line uses only the inductive hypothesis; the second line uses the first line and the inductive hypothesis; the third line uses only the first two lines.

This proof has about the same complexity as in (b), but it proves a stronger result.
d. Challenge problem: For any whole number ℓ, the Fibonacci number F_{ℓ} evenly divides F_{n} whenever ℓ divides n. That is, for any $\ell, m \in \mathbb{N}$, we have that $F_{\ell m}$ is a multiple of F_{ℓ}. Start with $\ell=4, m \geq 1$.
3. The product of two functions $f g$ is defined by $(f g)(x)=f(x) g(x)$. (Do not confuse $f g$ with the composition $f \circ g$.) In calculus, the Product Rule gives the derivative: $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$. This extends to a rule for the product of three functions:

$$
(f g h)^{\prime}=f^{\prime} g h+f g^{\prime} h+f g h^{\prime} .
$$

For example:

$$
\begin{aligned}
{\left[(x+1)\left(x^{2}\right)(\sin x)\right]^{\prime} } & =(x+1)^{\prime}\left(x^{2}\right)(\sin x)+(x+1)\left(x^{2}\right)^{\prime}(\sin x)+(x+1)\left(x^{2}\right)(\sin x)^{\prime} \\
& =(1)\left(x^{2}\right)(\sin x)+(x+1)(2 x)(\sin x)+(x+1)\left(x^{2}\right)(\cos x)
\end{aligned}
$$

In fact, we have a Product Rule for any number of functions:
PROPOSITION: For any differentiable real functions f_{1}, \ldots, f_{n}, the derivative of their product is:

$$
\left(f_{1} f_{2} \cdots f_{n}\right)^{\prime}=\left(f_{1}^{\prime} f_{2} \cdots f_{n}\right)+\left(f_{1} f_{2}^{\prime} \cdots f_{n}\right)+\cdots+\left(f_{1} f_{2} \cdots f_{n}^{\prime}\right)
$$

Prove this by induction, assuming the original, ordinary Product Rule.
SOlution: Since the statement makes no sense for $n=0,1$, the base case is the orginal Product Rule for $n=2:\left(f_{1} f_{2}\right)^{\prime}=f_{1}^{\prime} f_{2}+f_{1} f_{2}^{\prime}$.

Chain: Assume the formula for a n functions: $\left(f_{1} f_{2} \cdots f_{n}\right)^{\prime}=\left(f_{1}^{\prime} f_{2} \cdots f_{n}\right)+\cdots+\left(f_{1} f_{2} \cdots f_{n}^{\prime}\right)$. To compute the derivative for $n+1$ functions, apply the original Product Rule $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$ to the functions: $f=f_{1} f_{2} \cdots f_{n}$ and $g=f_{n+1}$:

$$
\begin{aligned}
\left(f_{1} \cdots f_{n} f_{n+1}\right)^{\prime} & =(f g)^{\prime}=f^{\prime} g+f g^{\prime} \\
& =\left(f_{1} f_{2} \cdots f_{n}\right)^{\prime} f_{n+1}+\left(f_{1} f_{2} \cdots f_{n}\right) f_{n+1}^{\prime} \\
& =\left[\left(f_{1}^{\prime} f_{2} \cdots f_{n}\right)+\cdots+\left(f_{1} f_{2} \cdots f_{n}^{\prime}\right)\right] f_{n+1}+\left(f_{1} f_{2} \cdots f_{n}\right) f_{n+1}^{\prime} \\
& =\left(f_{1}^{\prime} f_{2} \cdots f_{n} f_{n+1}\right)+\cdots+\left(f_{1} f_{2} \cdots f_{n}^{\prime} f_{n+1}\right)+\left(f_{1} f_{2} \cdots f_{n} f_{n+1}^{\prime}\right) .
\end{aligned}
$$

Here we used the inductive hypothesis for the third equality. We obtain the right-hand side of the desired formula for $(n+1)$ functions, so we are done.
4. Consider the inequality: $n^{2} \leq 2^{n}$, where n is a whole number.
a. Try this for $n=1, \ldots, 7$ to see when the inequality holds.
b. Prove the inequality by induction. Hint: Prove the equivalent equality $n \leq \sqrt{2}^{n}$. Start with the correct base case.
SOLUTION: First we prove $n \leq \sqrt{2}^{n}$. Start with the base $n=4$, for which we have $n=4=\sqrt{2}^{4}=\sqrt{2}^{n}$. For the Chain step, assume $n \leq \sqrt{2}^{n}$ for some $n \geq 4$, and compute:

$$
n+1 \leq \sqrt{2}^{n}+1=\sqrt{2}^{n}\left(1+\frac{1}{\sqrt{2}^{n}}\right) \leq \sqrt{2}^{n}\left(1+\frac{1}{\sqrt{2}^{4}}\right)=2^{n}\left(\frac{5}{4}\right) \leq \sqrt{2}^{n+1}
$$

Here we used that $n \geq 4$, so $\frac{1}{\sqrt{2}^{n}} \leq \frac{1}{\sqrt{2}^{4}}=\frac{5}{4}$.
This concludes the induction, so $n \leq \sqrt{2}^{n}$ for all $n \geq 4$. Both sides are positive reals, so we can square them to get: $n^{2} \leq\left(\sqrt{2}^{n}\right)^{2}=\sqrt{2}^{2 n}=2^{n}$ for $n \geq 4$.

