1. Proposition: For every positive integer n, the polynomial $x-y$ divides $x^{n}-y^{n}$.
a. Assume this proposition is true, use it to prove the following: 7 divides $12^{n}-5^{n}, 4$ divides $5 \cdot 7^{n}-3^{n}$, and 4 divides $3 \cdot 7^{n}+5 \cdot 3^{n}$.
First is a direct application of the proposition with $x=12$ and $y=5$. All we need to verify is that $x-y=7$.

For the second: $5 \cdot 7^{n}-3^{n}=4 \cdot 7^{n}+\left(7^{n}-3^{n}\right)$. First term is a multiple of 4 , and by the proposition the second term is also a multiple of 4 , hence the sum is a multiple of 4 .

For the third: $3 \cdot 7^{n}+5 \cdot 3^{n}=3 \cdot 7^{n}+5 \cdot 3^{n}-3 \cdot 3^{n}+3 \cdot 3^{n}=3\left(7^{n}-3^{n}\right)+8 \cdot 3^{n}$ where first term is divisible by 4 using the proposition and the second term is a multiple of 8 , hence a multiple of 4 , so the sum is a multiple of 4 .
b. (Optional) Prove the proposition using induction on n. (Hint: Try to create a term with a factor $\left(x^{n}-y^{n}\right)$)
Check for $n=0, x-y$ divides $1-1=0$, which holds.
Assume true for $n=k: x-y \mid x^{k}-y^{k}$, which means $x^{k}-y^{k}=(x-y) \cdot P(x, y)$ for some polynomial P in variables x and y and with integer coefficients.
For $n=k+1: x^{k+1}-y^{k+1}=x \cdot x^{k}-y \cdot y^{k}$, we want to find a term with a factor $\left(x^{n}-y^{n}\right)$

$$
\begin{aligned}
& =x \cdot x^{k}-\mathbf{x} \cdot \mathbf{y}^{\mathbf{k}}+\mathbf{x} \cdot \mathbf{y}^{\mathbf{k}}-y \cdot y^{k} \\
& =x \cdot\left(x^{k}-\mathbf{y}^{\mathbf{k}}\right)+\mathbf{x} \cdot \mathbf{y}^{\mathbf{k}}-y \cdot y^{k} \\
& =x \cdot\left(x^{k}-\mathbf{y}^{\mathbf{k}}\right)+y^{k}(\mathbf{x}-y)=(x-y)(P(x, y)-y) .
\end{aligned}
$$

2. Prove that if $\operatorname{gcd}(a, b)=1$ and $c \mid b$ then $\operatorname{gcd}(a, c)=1$. (Hint: Use proof by contradiction)

Assume the contrary: $\operatorname{gcd}(a, b)=1$ and $c \mid b$ and $\operatorname{gcd}(a, c)>1$
Since $\operatorname{gcd}(a, b)=1, b$ is nonzero, since $c \mid b$, we also have c is nonzero.
Let $\operatorname{gcd}(a, c)=d>1$. Then $a=d \cdot k$ and $c=d \cdot l$.
Since $c \mid b$, we can write $b=c \cdot m=(d \cdot l) \cdot m$ for some integer m.
We see that d is a common divisor of a and b greater than 1 , which contradicts with the original assumption that $\operatorname{gcd}(a, b)=1$.
3. Given two positive integers a, b consider the set $B=\{m \cdot a+n \cdot b \mid m, n \in \mathbb{Z}, m \cdot a+n \cdot b>0\}$, and let d be the smallest element in B (Why does it exist?).
Prove that d divides a. (Hint: use proof by contradiction and the division lemma)
Let $d=u \cdot a+v \cdot b$.
Assume that d doesn't divide a, then there is a remainder: $a=q \cdot d+r$ with $0 \leq r<d$.
Solving for r, we get $r=a-q \cdot d=a-q(u \cdot a+v \cdot b)=(1-q u) a+(-q v) b$ which is an element of B, but $r<d$ which contradicts with the fact that d was the smallest element.
Remark: B is nonempty because for $m=1, n=0$ we see that $a \in B$ since a itself is a positive integer.
4. (a) Let $A=\left\{k^{2} \mid k \in \mathbb{N}, k>2\right\}$. Show that $x \in A \Rightarrow x \mid(x-1)$!. (4! $\left.=4 \cdot 3 \cdot 2 \cdot 1\right)$

Check that $k<k^{2}-1$ and $2 k<k^{2}-1$ if $k>2$. Therefore k and $2 k$ are distinct factors in $\left(k^{2}-1\right)$!.
After rearranging we see $\left(k^{2}-1\right)!=k \cdot(2 k) \cdot m$ where m is the product of all integers between 1 and $k^{2}-1$ except k and $2 k$.
(b) (Optional) Find the largest subet of \mathbb{N} for which the same statement is true.

Claim: All composite numbers greater than 4 .
Need to show: (1) true for composite numbers x that are not squares, and (2) false for prime numbers x.
(1) Write $x=a \cdot b$ with $1<a<b$ or $1<b<a$ and both are less than x,
hence without loss of generality we can assume $x=a \cdot b$ with $1<a<b<x-1$. (First and last inequalities are strict because $a \neq 1$ since x is composite. Again a and b are distinct factors in $(x-1)$!. (2) Follows from the definition of prime numbers and Euclid's lemma: if p divides the product $(x-1)(x-2) \cdots 2 \cdot 1$ then it has to divide one of the factors, but all factors are less than p.
5. Euclid's Lemma: Suppose that $n, a, b \in \mathbb{N}$. If $n \mid a \cdot b$ and $\operatorname{gcd}(n, a)=1$ then $n \mid b$.

Use Euclid's Lemma to prove that if a prime p divides $a \cdot b$ then p divides a or p divides b.
Case 1: $\operatorname{gcd}(p, a)=1$. If p divides $a \cdot b$, then by Euclid's lemma p divides b.
Case 2: $\operatorname{gcd}(p, a)>1$. In this case $g c d(p, a)=p$ since the only number that divides p greater than 1 is p itself. Hence p divides a.
6. (a) Use the Euclidean algorithm to compute $\operatorname{gcd}(2013,405)$. Show your steps.
$2013=4 \cdot 405+393 \quad 5 \cdot 405=2025$ which is too much, use $4 \cdot 405=1620$
$405=1 \cdot 393+12$
$393=? \cdot 12+? \quad 30 \cdot 12=360,31 \cdot 12=372,32 \cdot 12=384$
so
$393=32 \cdot 12+9 \quad$ hence $\left(^{* *}\right) 9=393-32 \cdot 12$
$12=1 \cdot 9+3 \quad$ hence $\left(^{*}\right) 3=12-1 \cdot 9$
$9=3 \cdot 3+0$ hence $g c d$ is the previous remainder.
(b) Use the solution to part (a) to find an integer solution (X, Y) for the equation $2013 x+405 y=15$. Is the solution unique?
$15=5 \cdot \operatorname{gcd}(2013,405)$, hence start to write 15 in terms of the remainders in the above computation:
$15=5 \cdot 3$
$=5 \cdot(12-1 \cdot 9)$ by $\left({ }^{*}\right)$
$=5(12-1 \cdot(393-32 \cdot 12))=5(33 \cdot 12-393)$ by $\left({ }^{* *}\right)$ and combining like terms
$=5(33(405-1 \cdot 393)-393)=5(33 \cdot 405-34 \cdot 393)$
$=5(33 \cdot 405-34(2013-4 \cdot 405))=5((33+34 \cdot 4) 405-34 \cdot 2013)$
$=2013(-5 \cdot 34)+405(5 \cdot(33+34 \cdot 4))$
The solution is not unique, we can increase x by $405 / 3$ and decrease y by 2013/3 and get a new solution. All other solutions are obtained similarly.

