PROPOSITION: The only pure magic square of order 3 is the following, together with its flips and turns:

2	7	6
9	5	1
4	3	8

Proof: We must classify all 3×3 arrays of numbers:

a	b	c
d	e	f
g	h	i

such that each number $1,2, \ldots, 9$ appears once in the array, and each row, column, and main diagonal sums to the same number n :

$$
\begin{array}{rlrl}
a+b+c=n & & a+d+g=n & \\
d+e+f=n & b+e+h=n & a+e+i=n \\
g+h+i=n & c+f+i=n & c+e+g=n
\end{array}
$$

Since $3 n=a+b+c+\cdots+i=1+2+\cdots+9=45$, we have $n=15$.
Now consider all the ways to obtain 15 as a sum of three distinct numbers from 1 to 9 . These triples are easily listed by specifying the largest number, then writing the other two in decreasing order:

$$
9+5+1, \quad 9+4+2, \quad 8+6+1, \quad 8+5+2, \quad 8+4+3, \quad 7+6+2, \quad 7+5+3, \quad 6+5+4 .
$$

These 8 triples must correspond somehow to the 8 equations $a+b+c=15$, etc. For each number $1, \ldots, 9$, we ask: how many triples is it involved in? And for each letter a, \ldots, i we ask: how many equations is it involved in? The results are:

$$
\begin{array}{c||c|c}
\text { four triples/eqns } & 5 & e \\
\hline \text { three triples/eqns } & 2,4,6,8 & a, c, g, i \\
\hline \text { two triples/eqns } & 1,3,7,9 & b, d, f, i
\end{array}
$$

Since e is involved in four equations (with distinct letters representing distinct numbers), its value must be a number involved in four distinct triples, meaning $e=5$.

Similarly, each of the letters a, c, g, i represents a number involved in at least three triples. Since $e=5$ is already taken, we can only have $\{a, c, g, i\}=\{2,4,6,8\}$. Since $e=5$ is in the middle, 2 must be diagonal to 8 , and 4 must be diagonal to 6 . A turn will bring 2 to the upper right corner, and a possible flip will bring 6 to the upper left:

2	b	6
d	5	f
4	h	8

But now we can solve for the remaining letters, obtaining the square in the Proposition.

