Math 309.005

PROPOSITION: The only pure magic square of order 3 is the following, together with its flips and turns:

2	7	6
9	5	1
4	3	8

Proof: We must classify all 3×3 arrays of numbers:

a	b	c
d	e	f
g	h	i

such that each number $1, 2, \ldots, 9$ appears once in the array, and each row, column, and main diagonal sums to the same number n:

a+b+c=n	a+d+g=n	$a \perp a \perp i - n$
d + e + f = n	b+e+h=n	a + e + i = n
g+h+i=n	c + f + i = n	c + e + g = n

Since $3n = a + b + c + \dots + i = 1 + 2 + \dots + 9 = 45$, we have n = 15.

Now consider all the ways to obtain 15 as a sum of three distinct numbers from 1 to 9. These triples are easily listed by specifying the largest number, then writing the other two in decreasing order:

9+5+1, 9+4+2, 8+6+1, 8+5+2, 8+4+3, 7+6+2, 7+5+3, 6+5+4.

These 8 triples must correspond somehow to the 8 equations a + b + c = 15, etc. For each number 1,...,9, we ask: how many triples is it involved in? And for each letter a, \ldots, i we ask: how many equations is it involved in? The results are:

four triples/eqns	5	e
three triples/eqns	2, 4, 6, 8	a, c, g, i
two triples/eqns	1, 3, 7, 9	b, d, f, i

Since e is involved in four equations (with distinct letters representing distinct numbers), its value must be a number involved in four distinct triples, meaning e = 5.

Similarly, each of the letters a, c, g, i represents a number involved in *at least* three triples. Since e = 5 is already taken, we can only have $\{a, c, g, i\} = \{2, 4, 6, 8\}$. Since e = 5 is in the middle, 2 must be diagonal to 8, and 4 must be diagonal to 6. A turn will bring 2 to the upper right corner, and a possible flip will bring 6 to the upper left:

2	b	6
d	5	f
4	h	8

But now we can solve for the remaining letters, obtaining the square in the Proposition.