NAME:

Math 310.002

Quiz 33

Prove: Any group G of order 2 is isomorphic to the cyclic group $(\mathbb{Z}_2, +)$. That is, there is a mapping $\phi: G \to \mathbb{Z}_2$ which turns the multiplication table of G into that of \mathbb{Z}_2 .

Solution

- The order of a group, denoted |G|, is its number of elements. Thus, our G is any abstract group with 2 elements.
- The elements of G should be written as letters: symbols without any meaning as a symmetries, mappings, or matrices. The operation * is unknown, but must fulfill Axioms (1)–(4), including the existence of an idenity e. Thus we may write $G = \{e, g\}$.
- A group always has only one operation, *not* addition and multiplication like a ring. We usually think of the group operation as a kind of multiplication, even when it is actually the addition of a ring, as for $(\mathbb{Z}_2, +)$. Thus, when I say "the multiplication tables of G and \mathbb{Z}_2 ," I mean the unknown * operation for G, and the + operation for \mathbb{Z}_2 :

Note that (\mathbb{Z}_2, \cdot) is not a group at all: it is closed and associative, and 1 is the identity element, but 0 has no inverse with $0 \cdot a = 1$.

- We must have g * g = e, since g must have an inverse g^{-1} , and clearly $g^{-1} \neq e$, so the only other choice is $g^{-1} = g$, and $g * g = g * g^{-1} = e$.
- Now that we know the full table of G, we see that it is the same as the table of \mathbb{Z}_2 if we replace e by 0 and g by 1.

*	e	g	+	0	1
e	e	g		0	
g	g	e	1	1	0

• Put a second way, the mapping $\phi : G \to \mathbb{Z}_2$ with $\phi(e) = 0$ and $\phi(g) = 1$ is an isomorphism, because it is a bijection and takes every product a * b = c in G to a corresponding valid equation $\phi(a) + \phi(b) = \phi(c)$ in \mathbb{Z}_2 . That is:

> e * e = e becomes 0 + 0 = 0 e * g = g becomes 0 + 1 = 1 g * e = g becomes 1 + 0 = 1q * q = e becomes 1 + 1 = 1

This is the formal definiton of a homomorphism: $\phi(a) + \phi(b) = \phi(a * b)$.