Math 310.003 Complex Number Geometry Fall 2018

The complex numbers \mathbb{C} are all pairs of real numbers $(a, b) \in \mathbb{R}^2$, endowed with the usual vector addition, as well as a non-obvious multiplication:

$$(a,b) + (c,d) = (a+c,b+d),$$
 $(a,b)(c,d) = (ac-bd,ad+bc).$

This defines a field with identity element $1_{\mathbb{C}} = (1, 0)$, and we shall identify any real number a with (a, 0). (This defines a one-to-one homomorphism $\mathbb{R} \to \mathbb{C}$.) Letting i = (0, 1), we have $i^2 = -1 = (-1, 0)$. Since (a, b) = a + bi, we call a and b the real and imaginary components.

To every complex number (a, b), we associate a linear transformation of the plane by multiplying an arbitrary vector (x, y) by (a, b):

$$L_{(a,b)} : \mathbb{R}^2 \to \mathbb{R}^2, \qquad L_{(a,b)}(x,y) = (a,b)(x,y) = (ax-by,ay+bx).$$

Extra Credit Problems

1. Write the 2 × 2 matrix of the linear mapping $L_{(a,b)}$, with respect to the standard basis (1,0), (0,1). (Recall any linear L is associated to a matrix [L] defined by the column vectors L(1,0) = (p,q) and L(0,1) = (s,t), so $[L] = \begin{bmatrix} p & s \\ q & t \end{bmatrix}$. Then we have $L(x,y) = \begin{bmatrix} p & s \\ q & t \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$. In particular, $L_{(1,0)}$ should be the identity matrix.)

2. Explain why the mapping $f : \mathbb{C} \to M_2(\mathbb{R})$ given by $f(a, b) = [L_{(a,b)}]$ must be a one-to-one homomorphism, using the distributive and associative properties of complex multiplication. Conclude that the complex numbers are isomorphic to the subring of matrices resulting from all $L_{(a,b)}$.

3. Characterize $L_{(0,1)}$ in geometric terms as a mapping of the plane to itself, by seeing its effect on the two basis vectors (1,0) and (0,1). How does multiplying by *i* move the plane?

4. Similarly, characterize $L_{(a,b)}$ in geometric terms. Hint: Write complex numbers in polar coordinates as:

$$(x, y) = (r \cos \theta, r \sin \theta)$$
 and $(a, b) = (c \cos \alpha, c \sin \alpha).$

Use trig identities to understand how the basis vectors are affected by the mapping.