The complex numbers \mathbb{C} are all pairs of real numbers $(a, b) \in \mathbb{R}^{2}$, endowed with the usual vector addition, as well as a non-obvious multiplication:

$$
(a, b)+(c, d)=(a+c, b+d), \quad(a, b)(c, d)=(a c-b d, a d+b c)
$$

This defines a field with identity element $1_{\mathbb{C}}=(1,0)$, and we shall identify any real number a with ($a, 0$). (This defines a one-to-one homomorphism $\mathbb{R} \rightarrow \mathbb{C}$.) Letting $i=(0,1)$, we have $i^{2}=-1=(-1,0)$. Since $(a, b)=a+b i$, we call a and b the real and imaginary components.

To every complex number (a, b), we associate a linear transformation of the plane by multiplying an arbitrary vector (x, y) by (a, b) :

$$
L_{(a, b)}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad L_{(a, b)}(x, y)=(a, b)(x, y)=(a x-b y, a y+b x)
$$

Extra Credit Problems

1. Write the 2×2 matrix of the linear mapping $L_{(a, b)}$, with respect to the standard basis $(1,0),(0,1)$. (Recall any linear L is associated to a matrix [L] defined by the column vectors $L(1,0)=(p, q)$ and $L(0,1)=(s, t)$, so $[L]=\left[\begin{array}{ll}p & s \\ q & t\end{array}\right]$. Then we have $L(x, y)=\left[\begin{array}{ll}p & s \\ q & t\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$. In particular, $L_{(1,0)}$ should be the identity matrix.)
2. Explain why the mapping $f: \mathbb{C} \rightarrow M_{2}(\mathbb{R})$ given by $f(a, b)=\left[L_{(a, b)}\right]$ must be a one-to-one homomorphism, using the distributive and associative properties of complex multiplication. Conclude that the complex numbers are isomorphic to the subring of matrices resulting from all $L_{(a, b)}$.
3. Characterize $L_{(0,1)}$ in geometric terms as a mapping of the plane to itself, by seeing its effect on the two basis vectors $(1,0)$ and $(0,1)$. How does multiplying by i move the plane?
4. Similarly, characterize $L_{(a, b)}$ in geometric terms. Hint: Write complex numbers in polar coordinates as:

$$
(x, y)=(r \cos \theta, r \sin \theta) \quad \text { and } \quad(a, b)=(c \cos \alpha, c \sin \alpha)
$$

Use trig identities to understand how the basis vectors are affected by the mapping.

