Algebra Definitions 1

We define some terms concerning generalized number systems.

- A ring is a set R along with operations of addition $+: R \times R \rightarrow R$ and multiplication $\cdot: R \times R \rightarrow R$, satisfying the following properties:
(i) + associativity: $(a+b)+c=a+(b+c)$ for all $a, b, c \in R$.
(ii) + identity: there exists $0 \in R$ such that $0+a=a+0=a$ for all $a \in R$.
(iii) + inverse: for any $a \in R$, there is a $b \in R$ with $a+b=b+a=0$: we denote b by $-a$.
(iv) + commutativity: $a+b=b+a$ for all $a, b \in R$.
(i') • associativity: $(a \cdot b) \cdot c=a \cdot(b \cdot c)$ for all $a, b, c \in R$.
(ii') • identity: there exists $1 \in R$ such that $1 \cdot a=a \cdot 1=a$ for all $a \in R$.
(v) distributivity: $a \cdot(b+c)=a \cdot b+a \cdot c$ and $(a+b) \cdot c=a \cdot c+b \cdot c$.
- A division ring is a ring satisfying:
(iii') • inverse: for any non-zero $a \in R$, there is a $b \in R$ with $a \cdot b=b \cdot a=0$: we denote b by a^{-1} or $1 / a$.
- A commutative ring is a ring satisfying:
(iv') \cdot commutativity: $a \cdot b=b \cdot a$ for all $a, b \in R$.
- A field is a ring satisfying both (iii') and (iv').
- A unit in ring R is an element a which has a mulitiplicative inverse $a^{-1} \in R$. Thus, a field is a ring in which every non-zero element is a unit.
- A zero-divisor in a ring R is an element $a \neq 0$ such that $a \cdot b=0$ for some $b \in R$. A domain is a commutative ring with no zero-divisors.
- A Euclidean ring is a domain R along with a function

$$
\text { size : } R \backslash\{0\} \rightarrow \mathbb{N}
$$

(where $\mathbb{N}=\{0,1,2, \cdots\}$) such that for any $a, b \in R$, there are $q, r \in R$ with $a=q b+r$ and $r=0$ or $\operatorname{size}(r)<\operatorname{size}(b)$.

