Algebra Definitions 1

We define some terms concerning generalized number systems.

- A ring is a set R along with operations of addition $+ : R \times R \to R$ and multiplication $\cdot : R \times R \to R$, satisfying the following properties:
 - (i) + associativity: (a + b) + c = a + (b + c) for all $a, b, c \in R$.
 - (ii) + identity: there exists $0 \in R$ such that 0 + a = a + 0 = a for all $a \in R$.
 - (iii) + inverse: for any $a \in R$, there is a $b \in R$ with a + b = b + a = 0: we denote b by -a.
 - (iv) + commutativity: a + b = b + a for all $a, b \in R$.
 - (i') associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in R$.
 - (ii') identity: there exists $1 \in R$ such that $1 \cdot a = a \cdot 1 = a$ for all $a \in R$.
 - (v) distributivity: $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(a+b) \cdot c = a \cdot c + b \cdot c$.
- A division ring is a ring satisfying:
 - (iii') inverse: for any non-zero $a \in R$, there is a $b \in R$ with $a \cdot b = b \cdot a = 0$: we denote b by a^{-1} or 1/a.
- A commutative ring is a ring satisfying:
 - (iv') commutativity: $a \cdot b = b \cdot a$ for all $a, b \in R$.
- A field is a ring satisfying both (iii') and (iv').
- A unit in ring R is an element a which has a multiplicative inverse $a^{-1} \in R$. Thus, a field is a ring in which every non-zero element is a unit.
- A zero-divisor in a ring R is an element $a \neq 0$ such that $a \cdot b = 0$ for some $b \in R$. A domain is a commutative ring with no zero-divisors.
- A Euclidean ring is a domain R along with a function

size :
$$R \setminus \{0\} \to \mathbb{N}$$

(where $\mathbb{N} = \{0, 1, 2, \dots\}$) such that for any $a, b \in \mathbb{R}$, there are $q, r \in \mathbb{R}$ with a = qb + r and r = 0 or size(r) < size(b).