Lecture Mon 10/4/05

Algebra Definitions 2: Real Numbers

- There is not necessarily any natural order on a given commutative ring R : rather, we must define it. An order relation on R is a specification of when $a<b$ holds for elements $a, b \in R$. Once $<$ is defined, we let $a>b$ mean $b<a$, and we let $a \leq b$ mean $a<b$ or $a=b$. The defined relation must obey the following axioms:
(i) Compatibility with + and \cdot

If $a<b$ and c is arbitrary, then $a+c<b+c$.
If $0<a<b$ and $0<c$, then $a \cdot c<b \cdot c$.
(ii) Trichotomy: For any $a \in R$, exactly one of the following holds: $a>0, a=0$ or $a<0$.

EXERCISES: These axioms imply all the usual algebraic properties of inequalities. Prove the follwing:

- $a<b \Longleftrightarrow b-a>0$
- If $a<b$ and $b<c$, then $a<c$.
- If $a>0$, then $-a<0$.
- If $a, b<0$, then $a b>0$.
- If R contains an element with $a^{2}=-1$, then there is no possible order relation on R. (Thus, there is no possible order on the complex numbers $R=\mathbb{C}$.)
- Consider an ordered ring R. An upper bound of a subset $A \subset R$ is an element $b \in R$ such that $b \geq a$ for all $a \in A$. A least upper bound of A is an upper bound b such that $b \leq b^{\prime}$ for every upper bound b^{\prime} of A.
We say that R is topologically complete if it obeys the least upper bound property: If a set A has any upper bound in $r \in R$, then A has a least upper bound in $r^{\prime} \in R$.

EXERCISES:

- The field of rational numbers $R=\mathbb{Q}$ is not topologically complete. Answer: The set $S=\left\{x \in \mathbb{Q} \mid x^{2}<2\right\}$ has upper bounds $1.5,1.42,1.415$, etc., but does not have any least upper bound in \mathbb{Q}.
- The ring of integers $R=\mathbb{Z}$ is topologically complete.
- We construct the field of real numbers \mathbb{R} out of the rational numbers \mathbb{Q} by defining a real number to be a cutset: i.e., a set of rational numbers $S \subset \mathbb{Q}$ such that:
(i) S is a downset: $s \in S$ implies $t \in S$ for all $t<s$.
(ii) S is non-trivial: $S \neq \emptyset, \mathbb{Q}$.
(iii) S contains no maximal element: no element $s \in S$ is an upper bound of S.

Defining,$+ \cdot$, and $<$ appropriately, we show that \mathbb{R} is a topologically complete, ordered field.

- Addition: $S+T:=\{s+t \mid s \in S, t \in T\}$.
- Zero element: $S_{0}=\mathbb{Q}_{<0}:=\{s \in \mathbb{Q} \mid s<0\}$.
- Negatives: $-S:=\{-s \mid s \notin S, s \neq \operatorname{lub}(S)\}$.
- Order: $S<T$ means $S \subset T$
- Multiplication: For $S, T \geq S_{0}$, define:

$$
S \cdot T:=\{s t \mid s \in S, t \in T, s, t \geq 0\} \cup S_{0}
$$

For $S<0<T$, define $S \cdot T:=-(-S \cdot T)$, and similarly for other cases.
We then proceed to prove that the above definition satisfies the properties of a field with order and topological completeness. This involves a lot of checking, but our definitions at least make the completeness easy: If $\mathcal{A} \subset \mathbb{R}$ is any collection of downsets $S \in \mathcal{A}$, then an upper bound is a cutset $B \subset \mathbb{Q}$ with $S \subset B$ for all $S \in \mathcal{A}$. Then we easily check that $B:=\bigcup_{S \in \mathcal{A}} S$ is a cutset, and is the least upper bound of \mathcal{A}.
Our definition establishes the existence of \mathbb{R}, but once we have established it, we never use it in proofs. Rather, we rely on the unique properties of \mathbb{R} stated in the following result.

- Theorem If R is any topologically complete ordered field, then R is naturally isomorphic to \mathbb{R}. That is, there is a unique map $\phi: R \rightarrow \mathbb{R}$ which is one-to-one and onto, and which respects addition and multiplication: $\phi(a+b)=\phi(a)+\phi(b)$ and $\phi(a \cdot b)=\phi(a) \cdot \phi(b)$ for all $a, b \in R$.

That is, any topologically complete ordered field is just a "copy" of the real numbers, so that anything true about \mathbb{R} also holds for any such field. Thus, in proving things about \mathbb{R}, we should only use the properties of a complete ordered field, never any specific construction of \mathbb{R} such as the one above.

- A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $x=a$ if, for any y-tolerance $\epsilon>0$, there is some sufficiently small x-tolerance $\delta>0$ such that x being within distance δ of a guarantees that $f(x)$ is within distance ϵ of $f(a)$. That is:

$$
\forall \epsilon>0 \exists \delta>0:|x-a|<\delta \Longrightarrow|f(x)-f(a)|<\epsilon
$$

We have:

- $f(x)=$ const and $f(x)=x$ are continuous at all $x=a$.
- If $f(x), g(x)$ are continuous at $x=a$, then so are $f(x)+g(x), f(x) \cdot g(x)$, and $f(x) / g(x)$ (the last provided $g(a) \neq 0)$.
- Any polynomial function $f(x) \in \mathbb{R}[x]$ is continuous at all $x=a$, and any rational function $f(x) / g(x) \in \mathbb{R}(x)$ is continuous at all $x=a$ with $g(a) \neq 0$.
- Theorem (Intermediate Value Theorem) If $f:[a, b] \rightarrow \mathbb{R}$ is a function continuous on an interval $[a, b]$, and $f(a)<v<f(b)$, then there is some value $c \in[a, b]$ such that $f(c)=v$.

That is, $f(x)$ cannot go past the value v without hitting it. This implies that any odddegree polynomial $f(x) \in \mathbb{R}[x]$ has a root $f(c)=0$.

