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Lecture Mon 10/4/05

Algebra Definitions 2: Real Numbers

• There is not necessarily any natural order on a given commutative ring R : rather, we must
define it. An order relation on R is a specification of when a < b holds for elements
a, b ∈ R. Once < is defined, we let a > b mean b < a, and we let a ≤ b mean a < b or
a = b. The defined relation must obey the following axioms:

(i) Compatibility with + and •

If a < b and c is arbitrary, then a + c < b + c.
If 0 < a < b and 0 < c, then a • c < b • c.

(ii) Trichotomy: For any a ∈ R, exactly one of the following holds: a > 0, a = 0 or a < 0.

exercises: These axioms imply all the usual algebraic properties of inequalities. Prove
the follwing:

• a < b ⇐⇒ b − a > 0 • If a < b and b < c, then a < c.

• If a > 0, then −a < 0. • If a, b < 0, then ab > 0.

• If R contains an element with a2 = −1, then there is no possible order relation on R.
(Thus, there is no possible order on the complex numbers R = C.)

• Consider an ordered ring R. An upper bound of a subset A ⊂ R is an element b ∈ R such
that b ≥ a for all a ∈ A. A least upper bound of A is an upper bound b such that b ≤ b′ for
every upper bound b′ of A .

We say that R is topologically complete if it obeys the least upper bound property:
If a set A has any upper bound in r ∈ R , then A has a least upper bound in r′ ∈ R.

exercises:

• The field of rational numbers R = Q is not topologically complete. Answer: The set
S = {x ∈ Q | x2 < 2} has upper bounds 1.5 , 1.42 , 1.415 , etc., but does not have any
least upper bound in Q.

• The ring of integers R = Z is topologically complete.

• We construct the field of real numbers R out of the rational numbers Q by defining
a real number to be a cutset: i.e., a set of rational numbers S ⊂ Q such that:

(i) S is a downset: s ∈ S implies t ∈ S for all t < s.

(ii) S is non-trivial: S �= ∅, Q.

(iii) S contains no maximal element: no element s ∈ S is an upper bound of S.

Defining +, • , and < appropriately, we show that R is a topologically complete, ordered
field.



– Addition: S + T := {s + t | s ∈ S , t ∈ T} .

– Zero element: S0 = Q<0 := {s ∈ Q | s < 0}.
– Negatives: −S := {−s | s �∈ S , s �= lub(S)} .

– Order: S < T means S ⊂ T

– Multiplication: For S, T ≥ S0 , define:

S • T := {st | s ∈ S , t ∈ T , s, t ≥ 0} ∪ S0 .

For S < 0 < T , define S • T := −(−S • T ) , and similarly for other cases.

We then proceed to prove that the above definition satisfies the properties of a field with
order and topological completeness. This involves a lot of checking, but our definitions at
least make the completeness easy: If A ⊂ R is any collection of downsets S ∈ A, then an
upper bound is a cutset B ⊂ Q with S ⊂ B for all S ∈ A . Then we easily check that
B :=

⋃
S∈A S is a cutset, and is the least upper bound of A.

Our definition establishes the existence of R, but once we have established it, we never use
it in proofs. Rather, we rely on the unique properties of R stated in the following result.

• Theorem If R is any topologically complete ordered field, then R is naturally isomorphic
to R. That is, there is a unique map φ : R → R which is one-to-one and onto, and which
respects addition and multiplication: φ(a + b) = φ(a) + φ(b) and φ(a · b) = φ(a) · φ(b) for
all a, b ∈ R.

That is, any topologically complete ordered field is just a “copy” of the real numbers, so
that anything true about R also holds for any such field. Thus, in proving things about R,
we should only use the properties of a complete ordered field, never any specific construction
of R such as the one above.

• A function f : R → R is continuous at x = a if, for any y-tolerance ε > 0, there is some
sufficiently small x-tolerance δ > 0 such that x being within distance δ of a guarantees
that f(x) is within distance ε of f(a). That is:

∀ε>0 ∃δ>0 : |x − a| < δ =⇒ |f(x) − f(a)| < ε .

We have:

• f(x) = const and f(x) = x are continuous at all x = a.

• If f(x), g(x) are continuous at x = a, then so are f(x)+g(x), f(x)·g(x), and f(x)/g(x)
(the last provided g(a) �= 0).

• Any polynomial function f(x) ∈ R[x] is continuous at all x = a, and any rational
function f(x)/g(x) ∈ R(x) is continuous at all x = a with g(a) �= 0.

• Theorem (Intermediate Value Theorem) If f : [a, b] → R is a function continuous on an
interval [a, b], and f(a) < v < f(b), then there is some value c ∈ [a, b] such that f(c) = v.

That is, f(x) cannot go past the value v without hitting it. This implies that any odd-
degree polynomial f(x) ∈ R[x] has a root f(c) = 0.


