Lecture Mon 10/4/05 Algebra Definitions 2: Real Numbers

- There is not necessarily any natural order on a given commutative ring R: rather, we must define it. An **order relation** on R is a specification of when a < b holds for elements $a, b \in R$. Once < is defined, we let a > b mean b < a, and we let $a \le b$ mean a < b or a = b. The defined relation must obey the following axioms:
 - (i) Compatibility with + and \cdot If a < b and c is arbitrary, then a + c < b + c. If 0 < a < b and 0 < c, then $a \cdot c < b \cdot c$.
 - (ii) Trichotomy: For any $a \in R$, exactly one of the following holds: a > 0, a = 0 or a < 0.

EXERCISES: These axioms imply all the usual algebraic properties of inequalities. Prove the following:

- $a < b \iff b a > 0$ If a < b and b < c, then a < c.
- If a > 0, then -a < 0. • If a, b < 0, then ab > 0.
- If R contains an element with $a^2 = -1$, then there is no possible order relation on R. (Thus, there is no possible order on the complex numbers $R = \mathbb{C}$.)
- Consider an ordered ring R. An *upper bound* of a subset $A \subset R$ is an element $b \in R$ such that $b \ge a$ for all $a \in A$. A *least upper bound* of A is an upper bound b such that $b \le b'$ for every upper bound b' of A.

We say that R is **topologically complete** if it obeys the *least upper bound property*: If a set A has any upper bound in $r \in R$, then A has a least upper bound in $r' \in R$. EXERCISES:

- The field of rational numbers $R = \mathbb{Q}$ is *not* topologically complete. Answer: The set $S = \{x \in \mathbb{Q} \mid x^2 < 2\}$ has upper bounds 1.5, 1.42, 1.415, etc., but does not have any least upper bound in \mathbb{Q} .
- The ring of integers $R = \mathbb{Z}$ is topologically complete.
- We construct the field of real numbers \mathbb{R} out of the rational numbers \mathbb{Q} by defining a real number to be a *cutset*: i.e., a set of rational numbers $S \subset \mathbb{Q}$ such that:
 - (i) S is a downset: $s \in S$ implies $t \in S$ for all t < s.
 - (ii) S is non-trivial: $S \neq \emptyset, \mathbb{Q}$.
 - (iii) S contains no maximal element: no element $s \in S$ is an upper bound of S.

Defining +, •, and < appropriately, we show that \mathbb{R} is a topologically complete, ordered field.

- Addition: $S + T := \{s + t \mid s \in S, t \in T\}$.
- Zero element: $S_0 = \mathbb{Q}_{<0} := \{s \in \mathbb{Q} \mid s < 0\}.$
- Negatives: $-S := \{-s \mid s \notin S, s \neq \operatorname{lub}(S)\}$.
- Order: S < T means $S \subset T$
- Multiplication: For $S, T \ge S_0$, define:

$$S \bullet T := \{ st \mid s \in S, t \in T, s, t \ge 0 \} \cup S_0.$$

For S < 0 < T, define $S \cdot T := -(-S \cdot T)$, and similarly for other cases.

We then proceed to prove that the above definition satisfies the properties of a field with order and topological completeness. This involves a lot of checking, but our definitions at least make the completeness easy: If $\mathcal{A} \subset \mathbb{R}$ is any collection of downsets $S \in \mathcal{A}$, then an upper bound is a cutset $B \subset \mathbb{Q}$ with $S \subset B$ for all $S \in \mathcal{A}$. Then we easily check that $B := \bigcup_{S \in \mathcal{A}} S$ is a cutset, and is the least upper bound of \mathcal{A} .

Our definition establishes the existence of \mathbb{R} , but once we have established it, we *never* use it in proofs. Rather, we rely on the *unique properties* of \mathbb{R} stated in the following result.

• **Theorem** If R is any topologically complete ordered field, then R is naturally isomorphic to \mathbb{R} . That is, there is a unique map $\phi : R \to \mathbb{R}$ which is one-to-one and onto, and which respects addition and multiplication: $\phi(a + b) = \phi(a) + \phi(b)$ and $\phi(a \cdot b) = \phi(a) \cdot \phi(b)$ for all $a, b \in R$.

That is, any topologically complete ordered field is just a "copy" of the real numbers, so that anything true about \mathbb{R} also holds for any such field. Thus, in proving things about \mathbb{R} , we should only use the properties of a complete ordered field, never any specific construction of \mathbb{R} such as the one above.

• A function $f : \mathbb{R} \to \mathbb{R}$ is **continuous** at x = a if, for any y-tolerance $\epsilon > 0$, there is some sufficiently small x-tolerance $\delta > 0$ such that x being within distance δ of a guarantees that f(x) is within distance ϵ of f(a). That is:

$$\forall \epsilon > 0 \; \exists \delta > 0 \; : \; |x - a| < \delta \implies |f(x) - f(a)| < \epsilon \, .$$

We have:

- f(x) = const and f(x) = x are continuous at all x = a.
- If f(x), g(x) are continuous at x = a, then so are f(x)+g(x), $f(x)\cdot g(x)$, and f(x)/g(x) (the last provided $g(a) \neq 0$).
- Any polynomial function $f(x) \in \mathbb{R}[x]$ is continuous at all x = a, and any rational function $f(x)/g(x) \in \mathbb{R}(x)$ is continuous at all x = a with $g(a) \neq 0$.
- **Theorem** (Intermediate Value Theorem) If $f : [a, b] \to \mathbb{R}$ is a function continuous on an interval [a, b], and f(a) < v < f(b), then there is some value $c \in [a, b]$ such that f(c) = v.

That is, f(x) cannot go past the value v without hitting it. This implies that any odd-degree polynomial $f(x) \in \mathbb{R}[x]$ has a root f(c) = 0.