Lecture Mon 9/12/05

Algebra Definitions 1

We define some terms concerning generalized number systems.

- A ring is a set R along with operations of addition $+: R \times R \rightarrow R$ and multiplication $\cdot: R \times R \rightarrow R$, satisfying the following properties:
(i) + associativity: $(a+b)+c=a+(b+c)$ for all $a, b, c \in R$.
(ii) + identity: there exists $0 \in R$ such that $0+a=a+0=a$ for all $a \in R$.
(iii) + inverse: for any $a \in R$, there is a $b \in R$ with $a+b=b+a=0$: we denote b by $-a$.
(iv) + commutativity: $a+b=b+a$ for all $a, b \in R$.
(i') • associativity: $(a \cdot b) \cdot c=a \cdot(b \cdot c)$ for all $a, b, c \in R$.
(ii') • identity: there exists $1 \in R$ such that $1 \cdot a=a \cdot 1=a$ for all $a \in R$.
(v) distributivity: $a \cdot(b+c)=a \cdot b+a \cdot c$ and $(a+b) \cdot c=a \cdot c+b \cdot c$.
- A division ring is a ring satisfying:
(iii') • inverse: for any non-zero $a \in R$, there is a $b \in R$ with $a \cdot b=b \cdot a=0$: we denote b by a^{-1} or $1 / a$.
- A commutative ring is a ring satisfying:
$\left(\mathrm{iv}^{\prime}\right) \cdot$ commutativity: $a \cdot b=b \cdot a$ for all $a, b \in R$.
- A field is a ring satisfying both (iii') and (iv').
- A unit in ring R is an element a which has a mulitiplicative inverse $a^{-1} \in R$. The set of units is denoted R^{\times}. Thus, a field F is a ring in which every non-zero element is a unit: $F^{\times}=F \backslash\{0\}$. Elements of a ring are associates if they differ by a unit factor: $a, b \in R$ such that $a=u b$ for $u \in R^{\times}$.
- A zero-divisor in a ring R is an element $a \neq 0$ such that $a \cdot b=0$ for some $b \in R$. A domain is a commutative ring with no zero-divisors.
- A Euclidean ring is a domain R along with a function

$$
\text { size }: R \backslash\{0\} \rightarrow \mathbb{N}
$$

(where $\mathbb{N}=\{0,1,2, \cdots\}$) such that for any $a, b \in R$, there are $q, r \in R$ with $a=q b+r$ and $r=0$ or size $(r)<\operatorname{size}(b)$. The elements q, r are not necessarily unique.

Examples

- \mathbb{Z}, the integers, is commutative ring, a Euclidean domain, but not a field. The units are: $\mathbb{Z}^{\times}=\{ \pm 1\}$.
- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$, the rational, real and complex numbers, are all fields.
- \mathbb{Z}_{n}, clock arithmetic $\bmod n$, is a commutative ring for any n. It is a field for $n=2$. For which n is it a field? What are the units and zero-divisors?
- $M_{n}(\mathbb{Q})$, the $n \times n$ matrices with entries in \mathbb{Q} under matrix addition and multiplication, is a ring, but not commutative, and without division. The units are the nonsingular matrices, the zero-divisors are the singular matrices (prove!).
- $\mathbb{Q}[x]$, the polynomial functions:

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

with $a_{0}, \ldots, a_{n} \in \mathbb{Q}$, under the pointwise addition and multiplication, is a commutative ring and a domain. The units are the non-zero contstant functions $f(x)=c$. It is also a Euclidean domain under the polynomial division algorithm, with size function size $f(x)=\operatorname{deg} f(x)=n$, the degree of the highest non-zero term $a_{n} x^{n}$.
All of these features make the polynomial ring $\mathbb{Q}[x]$ analogous to the integer ring \mathbb{Z}.

- $\mathbb{Q}(x)$, the rational functions, is the set of quotients of two polynomial functions: $f(x) / g(x)$ with $g(x) \neq 0$. This is a field, analogous to \mathbb{Q}.

