FINAL REVIEW HW

1a. Use the Euclidean algorithm to compute the greatest common divisor $d=\operatorname{gcd}(372,264)$.
b. Find integers n, m such that $d=372 n+264 m$.
2. Prove the following assuming only the Euclidean algorithm and its immediate consequences.
a. Lemma: Let $a, b, c, d \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$ and suppose $a d=b c$. Then $a \mid c$ and $b \mid d$.
b. Lemma: Every rational number has a unique expression in lowest terms. That is, if we have $a / b=c / d$, with positive integers $a, b, c, d \in \mathbb{Z}$ and $\operatorname{gcd}(a, b)=\operatorname{gcd}(c, d)=1$, then $a=c$ and $b=d$.
c. Proposition: If $a / b \in \mathbb{Q}$ is a fraction in lowest terms with $(a / b)^{n / m} \in \mathbb{Q}$, then $a^{n / m}, b^{n / m} \in \mathbb{Z}$.
d. Show that $\sqrt[3]{2} / \sqrt[5]{6}$ is irrational.
3. Let $f(x)=3 x^{5}-4 x^{4}+2 x^{3}-5 x^{2}-12 x-4$.
a. Find all rational roots of $f(x)$ by means of the Rational Root Test.
b. Find all irrational real roots of $f(x)$, accurate to 1 decimal place, by applying Newton's Method over the reals. Hint: Divide out the linear factors found in part (a) before applying Newton.
c. Find all non-real complex roots of $f(x)$, accurate to 1 decimal place in each component. Hint: Divide out by the real linear factor found above, and in Newton's Method take the initial guess $x=x_{0}$ to be non-real.
4. Use the definition of continuity to prove that $f(x)=1 / x^{2}$ is continuous at $x=3$.
5. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be an automorphism of the real numbers: a one-to-one and onto correspondence which respects addition and multiplication: $\phi(a+b)=\phi(a)+\phi(b)$ and $\phi(a b)=\phi(a) \phi(b)$ for all $a, b \in \mathbb{R}$.
a. Show that $\phi(m / n)=m / n$ for every rational number $m / n \in \mathbb{Q}$. Hint: $\phi(1)=1$, so

$$
\phi(\underbrace{1+\cdots+1}_{n \text { times }})=\underbrace{1+\cdots+1}_{n \text { times }} .
$$

b. Show that if $a<b$, then $\phi(a)<\phi(b)$ for every $a, b \in \mathbb{R}$. Hint: $a<b$ iff $b-a=c^{2}$ for some $c \in \mathbb{R}$.
c. Show that $\phi(a)=a$ for all $a \in \mathbb{R}$. Hint: Suppose $\phi(a)<a$, and consider a rational number with $\phi(a)<m / n<a$.
6. In the complex plane, let p_{1}, \ldots, p_{5} be the vertices of a regular pentagon with center at $q=1+i$, the corner $p_{1}=0$ being at the origin. Write the polynomial $f(z)=\left(z-p_{1}\right) \cdots\left(z-p_{5}\right)$ as explicitly as possible.
7. Let $f(z)=\frac{1}{z+1}$.
a. Explicitly verify the Cauchy-Riemann equations which guarantee $f(z)$ is an analytic function except at $z=1$.
b. In the complex plane, let $\mathcal{T}=\mathcal{T}_{1}+\mathcal{T}_{2}+\mathcal{T}_{3}$ be the closed curve whose three pieces are line segments from 0 to 1 , from 1 to i, and from i back to 0 : the sides of an isoceles right triangle. Explicitly compute the complex line integral $\oint_{\mathcal{T}} f(z) d z$, verifying Cauchy's vanishing theorem.
c. Let \mathcal{C}_{1} and \mathcal{C}_{2} be the circles with center $1+i$ and radii $1 / 2$ and 2 respectively. Explicitly verify that the Cauchy Vanishing and Cauchy Mean Value theorems hold for $f(z)$ on \mathcal{C}_{1}, but not for $f(z)$ on \mathcal{C}_{2}. (Why not?)

