FINAL REVIEW HW

1a. Use the Euclidean algorithm to compute the greatest common divisor d = gcd(372, 264).
b. Find integers n, m such that d = 372n + 264m.

2. Prove the following assuming only the Euclidean algorithm and its immediate consequences.

a. Lemma: Let $a, b, c, d \in \mathbb{Z}$ with gcd(a, b) = 1 and suppose ad = bc. Then a|c and b|d.

b. Lemma: Every rational number has a unique expression in lowest terms. That is, if we have a/b = c/d, with positive integers $a, b, c, d \in \mathbb{Z}$ and gcd(a, b) = gcd(c, d) = 1, then a = c and b = d. **c.** Proposition: If $a/b \in \mathbb{Q}$ is a fraction in lowest terms with $(a/b)^{n/m} \in \mathbb{Q}$, then $a^{n/m}, b^{n/m} \in \mathbb{Z}$. **d.** Show that $\sqrt[3]{2}/\sqrt[5]{6}$ is irrational.

3. Let $f(x) = 3x^5 - 4x^4 + 2x^3 - 5x^2 - 12x - 4$.

a. Find all rational roots of f(x) by means of the Rational Root Test.

b. Find all irrational real roots of f(x), accurate to 1 decimal place, by applying Newton's Method over the reals. Hint: Divide out the linear factors found in part (a) before applying Newton.

c. Find all non-real complex roots of f(x), accurate to 1 decimal place in each component. Hint: Divide out by the real linear factor found above, and in Newton's Method take the initial guess $x = x_0$ to be non-real.

4. Use the definition of continuity to prove that $f(x) = 1/x^2$ is continuous at x = 3.

5. Let $\phi : \mathbb{R} \to \mathbb{R}$ be an automorphism of the real numbers: a one-to-one and onto correspondence which respects addition and multiplication: $\phi(a + b) = \phi(a) + \phi(b)$ and $\phi(ab) = \phi(a) \phi(b)$ for all $a, b \in \mathbb{R}$.

a. Show that $\phi(m/n) = m/n$ for every rational number $m/n \in \mathbb{Q}$. Hint: $\phi(1) = 1$, so

$$\phi(\underbrace{1+\dots+1}_{n \text{ times}}) = \underbrace{1+\dots+1}_{n \text{ times}}$$

b. Show that if a < b, then $\phi(a) < \phi(b)$ for every $a, b \in \mathbb{R}$. Hint: a < b iff $b - a = c^2$ for some $c \in \mathbb{R}$. **c.** Show that $\phi(a) = a$ for all $a \in \mathbb{R}$. Hint: Suppose $\phi(a) < a$, and consider a rational number with $\phi(a) < m/n < a$.

6. In the complex plane, let p_1, \ldots, p_5 be the vertices of a regular pentagon with center at q = 1+i, the corner $p_1 = 0$ being at the origin. Write the polynomial $f(z) = (z - p_1) \cdots (z - p_5)$ as explicitly as possible.

7. Let $f(z) = \frac{1}{z+1}$.

a. Explicitly verify the Cauchy-Riemann equations which guarantee f(z) is an analytic function except at z = 1.

b. In the complex plane, let $\mathcal{T} = \mathcal{T}_1 + \mathcal{T}_2 + \mathcal{T}_3$ be the closed curve whose three pieces are line segments from 0 to 1, from 1 to *i*, and from *i* back to 0: the sides of an isoceles right triangle. Explicitly compute the complex line integral $\oint_{\mathcal{T}} f(z) dz$, verifying Cauchy's vanishing theorem.

c. Let C_1 and C_2 be the circles with center 1+i and radii 1/2 and 2 respectively. Explicitly verify that the Cauchy Vanishing and Cauchy Mean Value theorems hold for f(z) on C_1 , but not for f(z) on C_2 . (Why not?)