
Math 418H Fall 2005

Lecture: Wed 10/10

1. Classifying real numbers

• R \ Q are the irrational numbers.

• Let A be the set of algebraic real numbers, those reals which are
roots of some polynomial f(x) ∈ Q[x].

• We call R \ A the transcendental numbers. For example, π =
3.14 · · · is transcendental, meaning that a0 +a1π + · · ·+anπn �= 0
for any a0, . . . , an ∈ Q.

2. Degrees of infinity (Georg Cantor)

• Cardinality: Two sets are said to have the same size or cardinality
if there exists a one-to-one correspondence (bijection) between
them.

• Countable: a set whose elements can be put into a list; i.e., the
set has the cardinality of the natural numbers N.

• Z is countable: Z = {0, 1,−1, 2,−2, . . .}
• Q is countable: Q>0 = {1
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skip over repeated rational numbers. Then alternate positive and
negative to list all Q.

• A is countable by a similar argument.

• R is not countable. Suppose we had a list {a1, a2, . . . } of all the
real numbers in the interval (0, 1). Write each number in decimal
form: ai = 0.ai1ai2ai3 · · · ), where aij is a digit 0–9. Define a
decimal number b = 0.b1b2b3 · · · by choosing the digits b1 �= a11 ,
b2 �= a22 , etc. Then clearly b �= ai for any i, since they differ in
the ith digit, so b is a real number not on the list. Therefore, there
can be no such complete list.

• The irrational numbers, and even the transcendental numbers,
are uncountable, so there are much, much more of them than of
rationals or algebraic numbers.

3. Uniqueness of the real numbers

• Theorem: The real numbers R are structurally defined by the
properties of a topologically complete ordered field.

That is, if R is any topologically complete ordered field, then
there exists a unique one-to-one correspondence φ : R → R which
respects addition and multiplication:

φ(a + b) = φ(a) + φ(b) and φ(ab) = φ(a) φ(b) ,



for every a, b ∈ R (so that φ(a), φ(b) ∈ R). We say that φ is an
isomorphism of fields. Furthermore, φ respects order: a < b ⇐⇒
φ(a) < φ(b) .

• Proof. First R, being a field, has unique additive and multiplica-
tive identity elements 0̃, 1̃ ∈ R. Now define the counterpart of an
integer

ñ := 1 + · · · + 1︸ ︷︷ ︸
n times

∈ R .

Now 1̃ = 1̃2 > 0̃ in the ordered field R, so if n < m ∈ Z, then in
R:

ñ < ñ + 1̃ + · · ·+ 1̃ = m̃ .

We can now make a copy of Q in R consisting of the quantities
ñ/m̃, and these numbers behave the same as ordinary rationals.
Finally, every real number a ∈ R is the least upper bound of a
cutset S ⊂ Q, so define its counterpart ã := lub{s̃ | s ∈ S} ∈
R, which exists since R is topologically complete. Now define
φ : R → R by φ(a) := ã . We may show this has the desired
properties, and is unique.

4. Exercise: Z is topologically complete

• We check the least upper bound property. Let A ⊂ Z be a
bounded, non-empty set of integers with upper bound r ∈ Z.
For a ∈ A, the subset A ∩ [a, r] = {a1, . . . , an} has at most r − a
elements. We clearly have m = max(a1, . . . , an) = maxA, and
this is the least upper bound of A in Z.

5. Exercise: If f(x), g(x) are continuous functions at x = a, then the
product function f(x)g(x) is likewise.

• We want to control the deviation |f(x)g(x) − f(a)g(a)| in terms
of |f(x) − f(a)| and |g(x) − g(a)| . We have:

|f(x)g(x) − f(a)g(a)| = |f(x)g(x) − f(x)g(a) + f(x)g(a) − f(a)g(a)|
≤ |f(x)| |g(x)−g(a)| + |f(x)−f(a)| |g(a)|

• Given ε > 0, choose δ > 0 small enough so that

|f(x) − f(a)| < min

(
ε

2(|g(a)| + ε)
, ε

)
,

|g(x) − g(a)| <
ε

2(|f(a)| + ε)
.

Then we have |f(x)| ≤ |f(a)| + ε , and:

|f(x)g(x) − f(a)g(a)| < (|f(a)|+ε)
ε

2(|f(a)|+ε)
+ |g(a)| ε

2(|g(a)|+ ε)
< ε/2 + ε/2 = ε .


