Lecture: Wed 10/10

1. Classifying real numbers

- $\mathbb{R} \backslash \mathbb{Q}$ are the irrational numbers.
- Let A be the set of algebraic real numbers, those reals which are roots of some polynomial $f(x) \in \mathbb{Q}[x]$.
- We call $\mathbb{R} \backslash A$ the transcendental numbers. For example, $\pi=$ $3.14 \cdots$ is transcendental, meaning that $a_{0}+a_{1} \pi+\cdots+a_{n} \pi^{n} \neq 0$ for any $a_{0}, \ldots, a_{n} \in \mathbb{Q}$.

2. Degrees of infinity (Georg Cantor)

- Cardinality: Two sets are said to have the same size or cardinality if there exists a one-to-one correspondence (bijection) between them.
- Countable: a set whose elements can be put into a list; i.e., the set has the cardinality of the natural numbers \mathbb{N}.
- \mathbb{Z} is countable: $\mathbb{Z}=\{0,1,-1,2,-2, \ldots\}$
- \mathbb{Q} is countable: $\mathbb{Q}_{>0}=\left\{\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{2}{2}, \frac{3}{1}, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, \frac{4}{1}, \ldots\right\}$. In the list, skip over repeated rational numbers. Then alternate positive and negative to list all \mathbb{Q}.
- A is countable by a similar argument.
- \mathbb{R} is not countable. Suppose we had a list $\left\{a_{1}, a_{2}, \ldots\right\}$ of all the real numbers in the interval $(0,1)$. Write each number in decimal form: $a_{i}=0 . a_{i 1} a_{i 2} a_{i 3} \cdots$), where $a_{i j}$ is a digit $0-9$. Define a decimal number $b=0 . b_{1} b_{2} b_{3} \cdots$ by choosing the digits $b_{1} \neq a_{11}$, $b_{2} \neq a_{22}$, etc. Then clearly $b \neq a_{i}$ for any i, since they differ in the $i^{\text {th }}$ digit, so b is a real number not on the list. Therefore, there can be no such complete list.
- The irrational numbers, and even the transcendental numbers, are uncountable, so there are much, much more of them than of rationals or algebraic numbers.

3. Uniqueness of the real numbers

- Theorem: The real numbers \mathbb{R} are structurally defined by the properties of a topologically complete ordered field.
That is, if \mathcal{R} is any topologically complete ordered field, then there exists a unique one-to-one correspondence $\phi: \mathbb{R} \rightarrow \mathcal{R}$ which respects addition and multiplication:

$$
\phi(a+b)=\phi(a)+\phi(b) \quad \text { and } \quad \phi(a b)=\phi(a) \phi(b),
$$

for every $a, b \in \mathbb{R}$ (so that $\phi(a), \phi(b) \in \mathcal{R})$. We say that ϕ is an isomorphism of fields. Furthermore, ϕ respects order: $a<b \Longleftrightarrow$ $\phi(a)<\phi(b)$.

- Proof. First \mathcal{R}, being a field, has unique additive and multiplicative identity elements $\tilde{0}, \tilde{1} \in \mathcal{R}$. Now define the counterpart of an integer

$$
\tilde{n}:=\underbrace{1+\cdots+1}_{n \text { times }} \in \mathcal{R} .
$$

Now $\tilde{1}=\tilde{1}^{2}>\tilde{0}$ in the ordered field \mathcal{R}, so if $n<m \in \mathbb{Z}$, then in \mathcal{R} :

$$
\tilde{n}<\tilde{n}+\tilde{1}+\cdots+\tilde{1}=\tilde{m} .
$$

We can now make a copy of \mathbb{Q} in \mathcal{R} consisting of the quantities \tilde{n} / \tilde{m}, and these numbers behave the same as ordinary rationals. Finally, every real number $a \in \mathbb{R}$ is the least upper bound of a cutset $S \subset \mathbb{Q}$, so define its counterpart $\tilde{a}:=\operatorname{lub}\{\tilde{s} \mid s \in S\} \in$ \mathcal{R}, which exists since \mathcal{R} is topologically complete. Now define $\phi: \mathbb{R} \rightarrow \mathcal{R}$ by $\phi(a):=\tilde{a}$. We may show this has the desired properties, and is unique.
4. Exercise: \mathbb{Z} is topologically complete

- We check the least upper bound property. Let $A \subset \mathbb{Z}$ be a bounded, non-empty set of integers with upper bound $r \in \mathbb{Z}$. For $a \in A$, the subset $A \cap[a, r]=\left\{a_{1}, \ldots, a_{n}\right\}$ has at most $r-a$ elements. We clearly have $m=\max \left(a_{1}, \ldots, a_{n}\right)=\max A$, and this is the least upper bound of A in \mathbb{Z}.

5. Exercise: If $f(x), g(x)$ are continuous functions at $x=a$, then the product function $f(x) g(x)$ is likewise.

- We want to control the deviation $|f(x) g(x)-f(a) g(a)|$ in terms of $|f(x)-f(a)|$ and $|g(x)-g(a)|$. We have:

$$
\begin{aligned}
|f(x) g(x)-f(a) g(a)| & =|f(x) g(x)-f(x) g(a)+f(x) g(a)-f(a) g(a)| \\
& \leq|f(x)||g(x)-g(a)|+|f(x)-f(a)||g(a)|
\end{aligned}
$$

- Given $\epsilon>0$, choose $\delta>0$ small enough so that

$$
\begin{gathered}
|f(x)-f(a)|<\min \left(\frac{\epsilon}{2(|g(a)|+\epsilon)}, \epsilon\right), \\
|g(x)-g(a)|<\frac{\epsilon}{2(|f(a)|+\epsilon)} .
\end{gathered}
$$

Then we have $|f(x)| \leq|f(a)|+\epsilon$, and:

$$
\begin{aligned}
|f(x) g(x)-f(a) g(a)| & <(|f(a)|+\epsilon) \frac{\epsilon}{2(|f(a)|+\epsilon)}+|g(a)| \frac{\epsilon}{2(|g(a)|+\epsilon)} \\
& <\epsilon / 2+\epsilon / 2=\epsilon
\end{aligned}
$$

