## Lecture: Mon 10/17

1. Why bother with complex numbers $\mathbb{C}$ ?

- Define new number systems to solve equations that have no solutions in old number systems.
- $x+1=0$ has no soln in $\mathbb{N}$, so define $\mathbb{Z}$ (negative numbers)
- $2 x-1=0$ has no soln in $\mathbb{Z}$, so define $\mathbb{Q}$ (fractions)
- $x^{2}-2$ has no soln in $\mathbb{Q}$, so define $\mathbb{R}$ (irrational numbers)
- $x^{2}+1=0$ has no soln in $\mathbb{R}$, so define $\mathbb{C}$ (imaginary numbers)

2. Formal definition of $\mathbb{C}$

- As with $\mathbb{Q}$ and $\mathbb{R}$, we do not try to uncover the "essence" of a new number like $i=\sqrt{-1}$. We just define it by enough information to determine all its properties.
- $\mathbb{C}=\mathbb{R} \times \mathbb{R}=\{(a, b) \mid a, b \in \mathbb{R}\}$, pairs of real numbers: $(a, b)$ represents the complex number $a+b i$.
- Addition: $(a, b)+(c, d):=(a+c, b+d)$.

Motivation: $(a+b i)+(c+d i)=(a+c)+(b+d) i$.

- Multiplication: $(a, b) \cdot(c, d):=(a c-b d, a d+b c)$.

Motivation: $(a+b i) \cdot(c+d i)=a c+b d i^{2}+a d i+b c i=(a c-b d)+(a d+b c) i$.

- Check the field axioms for $\mathbb{C}$. Identity elements: $(0,0),(1,0)$. Multiplicative associativity:

$$
\begin{aligned}
{[(a, b) \cdot(c, d)] \cdot(e, f) } & =(a c e-a d f-b c f-b d e)+(a c f+a d e+b c e-b d f) i \\
& =(a, b) \cdot[(c, d) \cdot(e, f)] .
\end{aligned}
$$

- The only tricky property is the existence of multiplicative inverses. We should have:

$$
\frac{1}{a+b i}=\frac{a-b i}{(a+b i)(a-b i)}=\frac{a-b i}{a^{2}+b^{2}}=\frac{a}{a^{2}+b^{2}}-\frac{b}{a^{2}+b^{2}} i .
$$

This is motivation, but proves nothing, because we have not established that $1 /(a+b i)$ even exists.

- Given $(a, b) \neq(0,0)$, we define the multiplicative inverse as:

$$
(a, b)^{-1}:=\left(\frac{a}{a^{2}+b^{2}},-\frac{b}{a^{2}+b^{2}}\right) .
$$

Now we prove that $(a, b) \cdot(a, b)^{-1}=(1,0)$ by applying the definition of multiplication.

- Notation: a real number $a \in \mathbb{R}$ is identified with $(a, 0)$, so we can regard $\mathbb{R} \subset \mathbb{C}$. Define $i:=(0,1)$.
- Prove that $i^{2}=-1$ and $(a, b)=a+b \cdot i$.

3. Geometric picture of $\mathbb{C}$

- Picture: $\mathbb{C}=\mathbb{R}^{2}, x+i y=(x, y)$, vectors in the real plane
- Addition of complex numbers $=$ usual addition of vectors (diagonal of parallelogram)
- Multiplication of complex numbers $=$ some kind of multiplication of plane vectors:

$$
(a+i b) \cdot(x+i y)=(a, b) \cdot(x, y)
$$

- Multiplying by $a=(a, 0)$, we have

$$
a \cdot(x, y)=(a x, a y)=\operatorname{stretch}(x, y) \text { by } a,
$$

the usual scalar multiple of a vector

- Multiplying by $i=(0,1)$, we have

$$
i \cdot(1,0)=(0,1), \quad i \cdot(0,1)=(-1,0)
$$

and: $(x, y) \mapsto i \cdot(x, y)=(-y, x)$ is an $\mathbb{R}$-linear map. Thus:

$$
i \cdot(x, y)=\operatorname{rotate}(x, y) \text { by } 90^{\circ} .
$$

- Multiplying by a unit-length vector $u=\cos \theta+i \sin \theta=(\cos \theta, \sin \theta)$ :

$$
u \cdot(1,0)=(\cos \theta, \sin \theta) \quad, \quad u \cdot(0,1)=(-\sin \theta, \cos \theta)
$$

and $(x, y) \mapsto u \bullet(x, y)$ is an $\mathbb{R}$-linear map. Thus:

$$
u \bullet(x, y)=\operatorname{rotate}(x, y) \text { by } \theta
$$

- 

$$
\begin{aligned}
(\cos \theta+i \sin \theta) \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right] & =\left[\begin{array}{c}
x \cos \theta-y \sin \theta \\
x \sin \theta+y \cos \theta
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
\end{aligned}
$$

4. •

- 

