Lecture: Wed 10/19

1. Complex multiplication $=$ rotation

- For $v=(a, b) \in \mathbb{C}$, consider the multiplication map

$$
\begin{aligned}
M_{v}: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{2} \\
(x, y) & \mapsto u \cdot(x, y)
\end{aligned}
$$

This map is \mathbb{R}-linear:

$$
\begin{gathered}
M_{v}(c x, c y)=c M_{v}(x, y) \\
M_{v}\left(x_{1}+x_{2}, y_{1}+y_{2}\right)=M_{v}\left(x_{1}, y_{1}\right)+M_{v}\left(x_{2}, y_{2}\right) .
\end{gathered}
$$

for all $c \in \mathbb{R}$ and $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$. Thus:

$$
M_{v}(x, y)=x M_{v}(1,0)+y M_{v}(0,1)
$$

- Multiply by $i=(0,1)$:

$$
\begin{gathered}
i \cdot(1,0)=(0,1), \quad i \cdot(0,1)=(-1,0) \\
i \cdot(x, y)=\operatorname{rotate}(x, y) \text { by } 90^{\circ} .
\end{gathered}
$$

- Multiply by a unit-length vector $u=\cos \theta+i \sin \theta=(\cos \theta, \sin \theta)$:

$$
\begin{gathered}
u \cdot(1,0)=(\cos \theta, \sin \theta) \quad, \quad u \cdot(0,1)=(-\sin \theta, \cos \theta) . \\
u \cdot(x, y)=\operatorname{rotate}(x, y) \text { by } \theta .
\end{gathered}
$$

- Write an arbitrary vector in polar coordinates: $v=r u$, where $r \in \mathbb{R}$ and $u=\cos \theta+i \sin \theta$. Then:

$$
v \cdot(x, y)=\operatorname{rotate}(x, y) \text { by } \theta, \text { then stretch by } r .
$$

2. Complex multiplication: add angles, multiply lengths

- Consider the complex product: $v_{3}=v_{1} \cdot v_{2}$, and write each number in polar form: $v_{j}=r_{j}\left(\cos \theta_{j}+i \sin \theta_{j}\right.$ for $j=1,2,3$. Then:

$$
\theta_{3}=\theta_{1}+\theta_{2} \quad, \quad r_{3}=r_{1} r_{2}
$$

that is: to multiply complex numbers, add their angles and multiply their lengths.

- First proof: Since the multiplcation map $(x, y) \mapsto v_{j} \bullet(x, y)$ is rotating by θ_{j} and stretching by r_{j}, we can describe the product $v_{1} \cdot v_{2}=v_{1} \cdot v_{2} \cdot 1$ as follows: start with unit vector 1 ; rotate by θ_{2}; stretch by r_{2}; rotate by θ_{1}; stretch by r_{1}. Result: rotate by $\theta_{1}+\theta_{2}$, and stretch by $r_{1} r_{2}$.
- Second proof: From the formula for complex multiplication:

$$
\begin{gathered}
r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right) \cdot r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
=r_{1} r_{2}\left(\left(\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}\right)+i\left(\cos \theta_{1} \sin \theta_{2}+\sin \theta_{1} \cos \theta_{2}\right)\right) \\
\stackrel{!}{=} r_{1} r_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right)
\end{gathered}
$$

by the angle-addition formulas .
3. Complex powers

- $2 v$ is the vector v stretched by 2
- $-v$ is the vector opposite to v
- Let $v=r(\cos \theta+i \sin \theta)$.
$v^{2}=v \cdot v$ is the vector with length r^{2} and angle 2θ
- \sqrt{v} is a vector with length \sqrt{r} and angle $\frac{1}{2} \theta$.
- There are 2 square roots because the angle θ is amiguous. We could just as well write:

$$
v=r(\cos (\theta+2 \pi)+i \sin (\theta+2 \pi))
$$

so that

$$
\begin{aligned}
\sqrt{v} & =\sqrt{r}\left(\cos \left(\frac{1}{2} \theta+\pi\right)+i \sin \left(\frac{1}{2} \theta+\pi\right)\right) \\
& =-\sqrt{r}\left(\cos \frac{1}{2} \theta+i \sin \frac{1}{2} \theta\right)
\end{aligned}
$$

- DeMoivre's Theorem: $v^{1 / n}$ is any vector with length $r^{1 / n}$ and angle

$$
\frac{\theta+2 k \pi}{n}=\frac{\theta}{n}+\frac{2 \pi k}{n} .
$$

There are n such vectors evenly spaced around the circle, corresponding to the values $k=0,1, \ldots, n-1$.
4. Complex numbers as matrices

- Any linear mapping $M: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by a 2×2 matrix. If $M(1,0)=(a, b)$ and $M(0,1)=(c, d)$, then: $M=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$, and:

$$
M(x, y)=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

Here we use row vectors and column vectors interchangeably: $(x, y)=\left[\begin{array}{l}x \\ y\end{array}\right]$

- The linear mapping M_{u} for $u=\cos \theta+i \sin \theta$ is given by the matrix:

$$
M_{u}(x, y)=v \cdot(x, y)=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

This is called the rotation matrix of θ.

- The linear mapping M_{v} for $v=a+b i=r u$ is rotation by θ and stretching by r. Its matrix is:

$$
M_{v}(x, y)=v \cdot(x, y)=\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

This is called a complex multiplication matrix.

- Consider the set of all complex mult matrices:

$$
M_{\mathrm{C}}:=\left\{\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right] \quad \text { where } a, b \in \mathbb{R}\right\} .
$$

This is a "copy" of the complex number field inside the ring of 2×2 matrices. That is, there is an isomorphism of fields from the complex numbers to this ring of matrices:

$$
\begin{array}{rll}
\phi: \quad \mathbb{C} & \rightarrow & M_{\mathrm{C}} \\
a+b i & \mapsto & {\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]}
\end{array}
$$

satisfies:

$$
\phi\left(v_{1}+v_{2}\right)=\phi\left(v_{1}\right)+\phi\left(v_{2}\right) \quad \text { and } \quad \phi\left(v_{1} \cdot v_{2}\right)=\phi\left(v_{1}\right) \cdot \phi\left(v_{2}\right),
$$

where the operation on the left side of each equation is in \mathbb{C}, and the operation on the right side is an operation of matrices.

