Lecture: Wed 10/19

- 1. Complex multiplication = rotation
 - For $v = (a, b) \in \mathbb{C}$, consider the multiplication map

$$\begin{array}{rccc} M_v : \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & u \, \boldsymbol{\cdot} (x,y) \end{array}$$

This map is \mathbb{R} -linear:

$$M_v(cx, cy) = cM_v(x, y)$$

$$M_v(x_1 + x_2, y_1 + y_2) = M_v(x_1, y_1) + M_v(x_2, y_2).$$

for all $c \in \mathbb{R}$ and $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$. Thus:

$$M_v(x, y) = x M_v(1, 0) + y M_v(0, 1).$$

• Multiply by i = (0, 1):

$$i \cdot (1,0) = (0,1)$$
, $i \cdot (0,1) = (-1,0)$
 $i \cdot (x,y) = \text{rotate } (x,y) \text{ by } 90^{\circ}.$

• Multiply by a unit-length vector $u = \cos\theta + i\sin\theta = (\cos\theta, \sin\theta)$:

 $u \cdot (1,0) = (\cos \theta, \sin \theta)$, $u \cdot (0,1) = (-\sin \theta, \cos \theta)$. $u \cdot (x,y) = \text{rotate} (x,y) \text{ by } \theta$.

• Write an arbitrary vector in polar coordinates: v = ru, where $r \in \mathbb{R}$ and $u = \cos\theta + i\sin\theta$. Then:

 $v \cdot (x, y) = \text{rotate } (x, y) \text{ by } \theta$, then stretch by r.

- 2. Complex multiplication: add angles, multiply lengths
 - Consider the complex product: $v_3 = v_1 \cdot v_2$, and write each number in polar form: $v_j = r_j(\cos \theta_j + i \sin \theta_j \text{ for } j = 1, 2, 3$. Then:

$$\theta_3 = \theta_1 + \theta_2 \quad , \quad r_3 = r_1 r_2 \,;$$

that is: to multiply complex numbers, add their angles and multiply their lengths.

- First proof: Since the multiplication map $(x, y) \mapsto v_j \cdot (x, y)$ is rotating by θ_j and stretching by r_j , we can describe the product $v_1 \cdot v_2 = v_1 \cdot v_2 \cdot 1$ as follows: start with unit vector 1; rotate by θ_2 ; stretch by r_2 ; rotate by θ_1 ; stretch by r_1 . Result: rotate by $\theta_1 + \theta_2$, and stretch by r_1r_2 .
- Second proof: From the formula for complex multiplication:

$$r_1(\cos\theta_1 + i\sin\theta_1) \cdot r_2(\cos\theta_2 + i\sin\theta_2)$$

 $= r_1 r_2 \left(\left(\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 \right) + i \left(\cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2 \right) \right)$ $\stackrel{!}{=} r_1 r_2 \left(\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right)$

by the angle-addition formulas.

- 3. Complex powers
 - 2v is the vector v stretched by 2
 - -v is the vector opposite to v
 - Let $v = r(\cos \theta + i \sin \theta)$. $v^2 = v \cdot v$ is the vector with length r^2 and angle 2θ
 - \sqrt{v} is a vector with length \sqrt{r} and angle $\frac{1}{2}\theta$.
 - There are 2 square roots because the angle θ is a miguous. We could just as well write:

$$v = r(\cos(\theta + 2\pi) + i\sin(\theta + 2\pi))$$

so that

$$\sqrt{v} = \sqrt{r} \left(\cos(\frac{1}{2}\theta + \pi) + i\sin(\frac{1}{2}\theta + \pi) \right)$$
$$= -\sqrt{r} \left(\cos\frac{1}{2}\theta + i\sin\frac{1}{2}\theta \right).$$

• DeMoivre's Theorem: $v^{1/n}$ is any vector with length $r^{1/n}$ and angle

$$\frac{\theta + 2k\pi}{n} = \frac{\theta}{n} + \frac{2\pi k}{n} \,.$$

There are *n* such vectors evenly spaced around the circle, corresponding to the values k = 0, 1, ..., n-1.

- 4. Complex numbers as matrices
 - Any linear mapping $M : \mathbb{R}^2 \to \mathbb{R}^2$ is defined by a 2×2 matrix. If M(1,0) = (a,b) and M(0,1) = (c,d), then: $M = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$, and:

$$M(x,y) = \left[\begin{array}{cc} a & c \\ b & d \end{array} \right] \cdot \left[\begin{array}{c} x \\ y \end{array} \right]$$

Here we use row vectors and column vectors interchangeably: $(x,y) = \left[\begin{array}{c} x \\ y \end{array} \right]$

• The linear mapping M_u for $u = \cos \theta + i \sin \theta$ is given by the matrix:

$$M_u(x,y) = v \cdot (x,y) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

This is called the *rotation matrix* of θ .

• The linear mapping M_v for v = a + bi = ru is rotation by θ and stretching by r. Its matrix is:

$$M_{v}(x,y) = v \bullet (x,y) = \left[\begin{array}{cc} a & -b \\ b & a \end{array} \right] \left[\begin{array}{cc} x \\ y \end{array} \right]$$

This is called a *complex multiplication matrix*.

• Consider the set of all complex mult matrices:

$$M_{\mathbf{C}} := \left\{ \left[\begin{array}{cc} a & -b \\ b & a \end{array} \right] \text{ where } a, b \in \mathbb{R} \right\} \,.$$

This is a "copy" of the complex number field inside the ring of 2×2 matrices. That is, there is an isomorphism of fields from the complex numbers to this ring of matrices:

$$\phi: \quad \mathbb{C} \quad \to \quad M_{\mathbf{C}}$$
$$a + bi \quad \mapsto \quad \left[\begin{array}{cc} a & -b \\ b & a \end{array} \right]$$

satisfies:

$$\phi(v_1 + v_2) = \phi(v_1) + \phi(v_2)$$
 and $\phi(v_1 \cdot v_2) = \phi(v_1) \cdot \phi(v_2)$,

where the operation on the left side of each equation is in \mathbb{C} , and the operation on the right side is an operation of matrices.