Lecture: Mon 10/24

- 1. Picturing complex functions
 - A complex function $f : \mathbb{C} \to \mathbb{C}$, f(x+iy) = u(x,y) + iv(x,y) has real component u(x,y) and imaginary component v(x,y), where $u, v : \mathbb{R}^2 \to R$ are real functions on $\mathbb{C} = \mathbb{R}^2$.
 - This is the same thing as a vector field $f : \mathbb{R}^2 \to \mathbb{R}^2$, f(x, y) = (u(x, y), v(x, y)), with x-component u(x, y) and y-component v(x, y). This can be pictured by a field plot: draw each arrow f(x, y) with its base at the point (x, y).
 - Example 1: The complex function f(z) = iz is equivalent to the vector field: f(x, y) = (-y, x) whose field plot has arrows circulating around the origin, with length proportional to their distance from the origin. This is the velocity field of a turn-table.

For a general $\alpha = r \operatorname{cis} \theta$, the field plot of $f(z) = \alpha z$ is a vortex centered at the origin, with the arrows rotated by angle θ away from the outward direction, like the velocity field of water swirling down the drain.

- Example 2: The complex function $f(z) = z^2 + (1+i)z + 1$ is equivalent to the vector field $f(x, y) = (x^2 y^2 + x y + 1, 2xy + y + x)$
- Example 3: The complex function $f(z) = \overline{z}$, complex conjugate, is equivalent to the vector field f(x, y) = (x, -y).
- 2. Derivative of a vector field
 - An arbitrary vector field f(x, y) = (u(x, y), v(x, y)) has a derivative matrix:

$$Df := \left[\begin{array}{cc} u_x & u_y \\ v_x & v_y \end{array} \right],$$

where

$$u_x(x,y) = \frac{\partial u}{\partial x} := \lim_{\epsilon \to 0} \frac{u(x+\epsilon, y) - u(x,y)}{\epsilon}$$

is the partial derivative of u(x, y) in the x-direction, etc.

• If $f : \mathbb{R} \to \mathbb{R}$ is an ordinary real function, its derivative f'(a) gives the slope of the best linear approximation to f(x) near x = a: for small ϵ , we have:

$$f(a+\epsilon) \approx f(a) + f'(a) \epsilon$$

which is just unravelling the definition of derivative:

$$f'(a) \approx \frac{f(a+\epsilon) - f(a)}{\epsilon}$$

Similarly, for a vector field $f : \mathbb{R}^2 \to \mathbb{R}^2$, the derivative matrix Df(a, b) gives the best linear-function approximation near the point (a, b): for small (ϵ_1, ϵ_2) , we have:

$$f(a+\epsilon_1, b+\epsilon_2) \approx f(a,b) + Df(a,b) \cdot \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \end{bmatrix}$$

where the last operation is matrix multiplication.

• Example 2: For $f(x, y) = (x^2 - y^2 + x - y + 1, 2xy + y + x)$, we have:

$$Df(x,y) = \begin{bmatrix} 2x+1 & 2y+1 \\ -2y-1 & 2x+1 \end{bmatrix}$$

• Example 3: For f(x, y) = (x, -y), we have:

$$Df(x,y) = \left[\begin{array}{rrr} 1 & 0\\ 0 & -1 \end{array}\right]$$

- 3. Complex analytic functions
 - We say a complex function f(x + iy) = u(x, y) + iv(x, y) is complex analytic (or just analytic) if any of the following equivalent conditions apply.
 - The partial derivatives of f(z) = f(x + iy) in the real and imaginary directions are *equal*:

$$\frac{\partial f(x+iy)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(z+\epsilon) - f(z)}{\epsilon} = u_x(x,y) + iv_x(x,y)$$
$$\stackrel{!}{=} \frac{\partial f(x+iy)}{\partial iy} = \lim_{\epsilon \to 0} \frac{f(z+i\epsilon) - f(z)}{i\epsilon} = v_y(x,y) - iu_y(x,y) \,.$$

We define the complex derivative f'(z) to be the common value of these partial derivatives.

• For every value z = x + iy, the derivative matrix Df(x, y) is a complex multiplication matrix M_{c+id} for some $c + id \in \mathbb{C}$:

$$Df := \begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix} = \begin{bmatrix} c & -d \\ d & c \end{bmatrix}$$

We define the complex derivative f'(z) to be the complex number in this multiplication matrix:

$$f'(z) := c + id = u_x + iv_x = v_y - iu_y$$

• The component functions of f(x + iy) = u(x, y) + iv(x, y) satisfy the *Cauchy-Riemann* partial differential equations:

$$u_x = v_y \quad , \quad v_x = -u_y \, .$$

- 4. Examples: analytic and non-analytic functions
 - Example 1: f(z) = iz, f(x, y) = (-y, x), $f'(z) = (u_x, v_x) = (v_y, -u_y) = (0, 1) = i$.
 - Example 2: $f(z) = z^2 + (1+1)z + 1$, $f(x, y) = (x^2 y^2 + x y + 1, 2xy + y + x)$, $f'(z) = (u_x, v_x) = (v_y, -u_y) = (2x + 1, 2y + 1) = 2z + 1$.
 - Example 3: $f(z) = \overline{z}$, f(x,y) = (x,-y),

$$f'(z) = (u_x, v_x) = (1, 0) \stackrel{?}{=} (v_y, -u_y) = (-1, 0).$$

The equality does not hold, so f(z) is not analytic at any z!

- For a general complex analytic f(z) with roots $z = r_1, \ldots, r_n$, the field plot has a vortex around each r_i which looks approximately like the vortex of $g(z) = \alpha z$ for $\alpha = f'(r_i)$.
- 5. Combining analytic functions
 - $f(z) = \alpha$ (constant function) and f(z) = z are analytic
 - If f(z) and g(z) are analytic, then:
 - f(z) + g(z) is analytic and (f(z) + g(z))' = f'(z) + g'(z). - f(z) g(z) is analytic and (f(z) g(z))' = f'(z)g(z) + f(z)g'(z). $- f(z)/g(z) \text{ is analytic for all } z \text{ where } g(z) \neq 0, \text{ and }$

$$\left(\frac{f(z)}{g(z)}\right)' = \frac{f'(z)g(z) - f(z)g'(z)}{g(z)^2}.$$

• Corollary: All polynomial functions $f(z) \in \mathbb{C}[z]$ are complex analytic for every z. All rational functions f(z)/g(z) are complex analytic except at the points z where g(z) = 0.

- 6. Fundamental Theorem of Algebra
 - *Theorem:* Any polynomial

$$f(z) = a_0 + a_1 z + \dots + a_n z^n \in \mathbb{C}[z]$$

of degree $n \ge 1$ has at least one complex root $z = \alpha$ with $f(\alpha) = 0$.

• This means: the field plot of any polynomial f(z) has at least one vortex. The plot of a high-degree polynomial is very complicated, so this is not at all obvious!

Alternatively: any complex polynomial of degree n can be completely split into n linear factors:

$$f(z) = a_n(z - r_1) \cdots (z - r_n).$$

This will have fewer than n vortices if some of the r_i 's coincide.

- *Strategy of Proof:* First, Cauchy's Mean Value Theorem says that for any circle in the complex plane, the value of an analytic function at the center is a certain average of the values on the circle.
- Next, Liouville's Theorem: Let f(z) be complex analytic on the whole plane, with $\lim_{|z|\to\infty} f(z) = 0$, meaning that f(z) becomes very small when z is far from the origin. Then f(z) can only be the zero constant function: f(z) = 0 for all z.

Proof: Consider any particular α , and take a very large circle centered at α . Given $\epsilon > 0$, by assumption we can take an α centered circle large enough so that $|f(z)| < \epsilon$ for z on the circle. By Cauchy, the value $f(\alpha)$ is the average of the values f(z) on the circle, so $|f(\alpha)| < \epsilon$. Since this is true for any $\epsilon > 0$, we must have $|f(\alpha)| = 0$, so $f(\alpha) = 0$. This holds for each $\alpha \in \mathbb{C}$.

- Finally, suppose there were a polynomial function g(z) with no roots. Then the function f(z) = 1/g(z) would be analytic on the whole plane, and $|g(z)| = 1/|f(z)| \to 0$ for $|z| \to \infty$, since deg $g(z) \ge 1$. But by Liouville, f(z) can only be the zero constant function, a contradiction.
- Note that the innocent-looking *non-analytic* function:

$$f(z) = z\bar{z} + 1 = |z|^2 + 1$$

has no roots! Analytic functions are very special.

$$f(z) = z^2 + (1+i)z + 1$$

V		1	1	1		K	1	۲	4	4	-	+	←	►	►		1	ĸ	ĸ	K
	ļ	ļ		1	1	Ľ	K	K	۲	۲	۲	+	←	4	6	4	🔨	5	5	1
	ļ	ļ	Ļ	ļ	ł	ł	1	Ľ	Ł	K	۲	ŧ	÷	\$	6	- K. -	۲	1	1	1
		ł	ł	ţ	ţ	ţ	ł	ł	ł	ł	×	¥	٠	٠	۱,	1	t	t	1	1
	Y	Y	Y	¥	ł	ł	ł	ł	ŧ	ŧ	ł	٠	•	·	,	+0).5	,	,	7
	M	4	1	Y	4	¥	¥	¥	¥	¥	¥	¥	٠	•	4	4	à	×	4	À
	۷_	1.4	⊾ ٍ	-1.2	2	^ -1	۶.	-0.8	3 ` .	-0.6	*	-0.4	* 	-0.2	> +	+	4	0.2	*	0.4
++	*	×	>	+ 	>	+ •	*	+++	*	++++ *	*	++++	*	++++	++	•) →		⊢ । →	+
	•	>	4	*	*	۲	۲	*	*	*	*	*	*	*	*	-	+	+	⇒	→
	•	4	4	4	*	*	*	*	*	*	4	*	*	*	*	+	→ ∩ =	+	4	4
	♦	4	4	+	4	*	*	*	*	*	*	*	*	*	*	*	0.0 \$	*	4	4
	♦	⇒	→	+	+	+	+	*	*	*	*	4	*	*	۲	*	*	*	>	4
	•	-	4	⇒	⇒	⇒	+	*	*	*	*	۲	۲	۶	*	*	1	>	>	>
1	•	4	4	4	+	+	÷	÷	4	4	¥	۲	¥	۷	¥	\$	۷	4	4	>
•	1	4	2	*	À	a	*	٠	٠	¥	¥	¥	¥	¥	¥	\$	¥	¥	4	4
•		7	7	,	,	,	,	٠	٠	•	ŧ	ŧ	ţ	ł	ł	\ _	1.5	¥	¥	4
	1	1	1	1	t	t	ĸ	4	٠	۲	Ł	ł	ł	ł	ł	ŧ	ţ	Ļ	ł	ł
		1	1	1	۲	ĸ	4	4	÷	٠	۲	K	Ľ	Ľ	¥	4	↓	ł	Ļ	Ļ
		1	5	5	ĸ	5	4	4	+	4	۲	۲	4	K	Ľ		2	1	↓	Ļ
ļ		5	K	ĸ	٨	1	1	►	←	+	۲	۲	۲	۲	K	4		K	V	

$f(z) = z^2$

L	⊥	Ţ	1	1	~	2	1	4	+	-	▲	1	ĸ	K	K	1	1	1	
Ĭ	Ĭ	j	J	1	-		-	-	4	-	▲	~	ĸ	K	~	1	1		
ĩ	ì	Ĩ	j	<u> </u>	_	-	-	-	04-	-	*	ĸ	ĸ	~	*	•			
						_	_		-		•	ĸ		*	*	•	•		
~	*	*	•	•	,		-	-						•		•			
*	*	*	*	•	*	*	ĸ		•	-		•	n	1	•				
X	*	*	¥	ł	ŧ	4	4	*	0.2-		6	4	1	Ť	T	T	-	_	_
	2	2	2	¥	ţ	ŧ	*	•	• <u>-</u>	•	•	*	t	1	*	7	>	~	
7	>	>	2	2	¥	*	٠	•	•	+ •	•	٠	•	*	*	>	>	>	>
4	7	*	*	*	۲	٠	•	•		+ .	•	٠	•	*	*	*	*	-	-
		*	*	*	*	•	•	•	•	· .		•	• • • • •	*	*		*		-
-	-	-0.4	` →	+	÷ -	0.2	•	•	0			•	0.	2 -	-	4	0 •4		-
-	-	2	*	×		•	•	•	•	- ·	•	٠	•	*	*	*	*	>	>
>	>	>	,	,	*		•	•	•	† .		٠	*	¥	S i	5	>	>	>
7	7	>	7	*	t	÷	٩	•	-0.2-	ļ.			÷	¥	¥	¥	5	5	1
7	7	7	1	1	Ť	t	5		• . •		ĸ	*	4	ŧ	t	¥	\$	5	5
7	7	1	1	Ť	t	4	5	*	*	-	*	*	4	4	Ť	1	\$	5	5
*	1	1	↑	1	1	~	R,	*	4	+	*	×	1	4	1	Ť	1	Ļ	L
1	1	1	•	4	K	~	ĸ	*		_	4	2	2	1		Ţ	Ţ	Ì	Ĺ
		•	•	*	×	ĸ	×	▲	-0:4	- -		·-	_ _	<u>_</u>	<u>,</u>	j		Ĭ	1
					· •		~	4			-	~	×	×		-		1	1
			1	~	~	~			~	-	~	~	K	×	×	¥	≁	≁	➡