Lecture: Mon 10/24

1. Picturing complex functions

- A complex function $f: \mathbb{C} \rightarrow \mathbb{C}, f(x+i y)=u(x, y)+i v(x, y)$ has real component $u(x, y)$ and imaginary component $v(x, y)$, where $u, v: \mathbb{R}^{2} \rightarrow R$ are real functions on $\mathbb{C}=\mathbb{R}^{2}$.
- This is the same thing as a vector field $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(x, y)=$ $(u(x, y), v(x, y))$, with x-component $u(x, y)$ and y-component $v(x, y)$. This can be pictured by a field plot: draw each arrow $f(x, y)$ with its base at the point (x, y).
- Example 1: The complex function $f(z)=i z$ is equivalent to the vector field: $f(x, y)=(-y, x)$ whose field plot has arrows circulating around the origin, with length proportional to their distance from the origin. This is the velocity field of a turn-table.
For a general $\alpha=r \operatorname{cis} \theta$, the field plot of $f(z)=\alpha z$ is a vortex centered at the origin, with the arrows rotated by angle θ away from the outward direction, like the velocity field of water swirling down the drain.
- Example 2: The complex function $f(z)=z^{2}+(1+i) z+1$ is equivalent to the vector field $f(x, y)=\left(x^{2}-y^{2}+x-y+1,2 x y+y+x\right)$
- Example 3: The complex function $f(z)=\bar{z}$, complex conjugate, is equivalent to the vector field $f(x, y)=(x,-y)$.

2. Derivative of a vector field

- An arbitrary vector field $f(x, y)=(u(x, y), v(x, y))$ has a derivative matrix:

$$
D f:=\left[\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right]
$$

where

$$
u_{x}(x, y)=\frac{\partial u}{\partial x}:=\lim _{\epsilon \rightarrow 0} \frac{u(x+\epsilon, y)-u(x, y)}{\epsilon}
$$

is the partial derivative of $u(x, y)$ in the x-direction, etc.

- If $f: \mathbb{R} \rightarrow \mathbb{R}$ is an ordinary real function, its derivative $f^{\prime}(a)$ gives the slope of the best linear approximation to $f(x)$ near $x=a$: for small ϵ, we have:

$$
f(a+\epsilon) \approx f(a)+f^{\prime}(a) \epsilon,
$$

which is just unravelling the definition of derivative:

$$
f^{\prime}(a) \approx \frac{f(a+\epsilon)-f(a)}{\epsilon}
$$

Similarly, for a vector field $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, the derivative matrix $D f(a, b)$ gives the best linear-function approximation near the point (a, b) : for small $\left(\epsilon_{1}, \epsilon_{2}\right)$, we have:

$$
f\left(a+\epsilon_{1}, b+\epsilon_{2}\right) \approx f(a, b)+D f(a, b) \cdot\left[\begin{array}{l}
\epsilon_{1} \\
\epsilon_{2}
\end{array}\right]
$$

where the last operation is matrix multiplication.

- Example 2: For $f(x, y)=\left(x^{2}-y^{2}+x-y+1,2 x y+y+x\right)$, we have:

$$
D f(x, y)=\left[\begin{array}{rr}
2 x+1 & 2 y+1 \\
-2 y-1 & 2 x+1
\end{array}\right]
$$

- Example 3: For $f(x, y)=(x,-y)$, we have:

$$
D f(x, y)=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

3. Complex analytic functions

- We say a complex function $f(x+i y)=u(x, y)+i v(x, y)$ is complex analytic (or just analytic) if any of the following equivalent conditions apply.
- The partial derivatives of $f(z)=f(x+i y)$ in the real and imaginary directions are equal:

$$
\begin{aligned}
\frac{\partial f(x+i y)}{\partial x} & =\lim _{\epsilon \rightarrow 0} \frac{f(z+\epsilon)-f(z)}{\epsilon}=u_{x}(x, y)+i v_{x}(x, y) \\
\stackrel{!}{=} \frac{\partial f(x+i y)}{\partial i y} & =\lim _{\epsilon \rightarrow 0} \frac{f(z+i \epsilon)-f(z)}{i \epsilon}=v_{y}(x, y)-i u_{y}(x, y) .
\end{aligned}
$$

We define the complex derivative $f^{\prime}(z)$ to be the common value of these partial derivatives.

- For every value $z=x+i y$, the derivative matrix $D f(x, y)$ is a complex multiplication matrix $M_{c+i d}$ for some $c+i d \in \mathbb{C}$:

$$
D f:=\left[\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right]=\left[\begin{array}{cc}
c & -d \\
d & c
\end{array}\right] .
$$

We define the complex derivative $f^{\prime}(z)$ to be the complex number in this multiplication matrix:

$$
f^{\prime}(z):=c+i d=u_{x}+i v_{x}=v_{y}-i u_{y} .
$$

- The component functions of $f(x+i y)=u(x, y)+i v(x, y)$ satisfy the Cauchy-Riemann partial differential equations:

$$
u_{x}=v_{y} \quad, \quad v_{x}=-u_{y} .
$$

4. Examples: analytic and non-analytic functions

- Example 1: $f(z)=i z, f(x, y)=(-y, x)$,

$$
f^{\prime}(z)=\left(u_{x}, v_{x}\right)=\left(v_{y},-u_{y}\right)=(0,1)=i .
$$

- Example 2: $f(z)=z^{2}+(1+1) z+1, f(x, y)=\left(x^{2}-y^{2}+x-y+1,2 x y+y+x\right)$,

$$
f^{\prime}(z)=\left(u_{x}, v_{x}\right)=\left(v_{y},-u_{y}\right)=(2 x+1,2 y+1)=2 z+1 .
$$

- Example 3: $f(z)=\bar{z}, f(x, y)=(x,-y)$,

$$
f^{\prime}(z)=\left(u_{x}, v_{x}\right)=(1,0) \stackrel{?}{=}\left(v_{y},-u_{y}\right)=(-1,0) .
$$

The equality does not hold, so $f(z)$ is not analytic at any z !

- For a general complex analytic $f(z)$ with roots $z=r_{1}, \ldots, r_{n}$, the field plot has a vortex around each r_{i} which looks approximately like the vortex of $g(z)=\alpha z$ for $\alpha=f^{\prime}\left(r_{i}\right)$.

5. Combining analytic functions

- $f(z)=\alpha$ (constant function) and $f(z)=z$ are analytic
- If $f(z)$ and $g(z)$ are analytic, then:
$-f(z)+g(z)$ is analytic and $(f(z)+g(z))^{\prime}=f^{\prime}(z)+g^{\prime}(z)$.
$-f(z) g(z)$ is analytic and $(f(z) g(z))^{\prime}=f^{\prime}(z) g(z)+f(z) g^{\prime}(z)$.
- $f(z) / g(z)$ is analytic for all z where $g(z) \neq 0$, and

$$
\left(\frac{f(z)}{g(z)}\right)^{\prime}=\frac{f^{\prime}(z) g(z)-f(z) g^{\prime}(z)}{g(z)^{2}} .
$$

- Corollary: All polynomial functions $f(z) \in \mathbb{C}[z]$ are complex analytic for every z. All rational functions $f(z) / g(z)$ are complex analytic except at the points z where $g(z)=0$.

6. Fundamental Theorem of Algebra

- Theorem: Any polynomial

$$
f(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n} \in \mathbb{C}[z]
$$

of degree $n \geq 1$ has at least one complex root $z=\alpha$ with $f(\alpha)=0$.

- This means: the field plot of any polynomial $f(z)$ has at least one vortex. The plot of a high-degree polynomial is very complicated, so this is not at all obvious!

Alternatively: any complex polynomial of degree n can be completely split into n linear factors:

$$
f(z)=a_{n}\left(z-r_{1}\right) \cdots\left(z-r_{n}\right) .
$$

This will have fewer than n vortices if some of the r_{i} 's coincide.

- Strategy of Proof: First, Cauchy's Mean Value Theorem says that for any circle in the complex plane, the value of an analytic function at the center is a certain average of the values on the circle.
- Next, Liouville's Theorem: Let $f(z)$ be complex analytic on the whole plane, with $\lim _{|z| \rightarrow \infty} f(z)=0$, meaning that $f(z)$ becomes very small when z is far from the origin. Then $f(z)$ can only be the zero constant function: $f(z)=0$ for all z.
Proof: Consider any particular α, and take a very large circle centered at α. Given $\epsilon>0$, by assumption we can take an α centered circle large enough so that $|f(z)|<\epsilon$ for z on the circle. By Cauchy, the value $f(\alpha)$ is the average of the values $f(z)$ on the circle, so $|f(\alpha)|<\epsilon$. Since this is true for any $\epsilon>0$, we must have $|f(\alpha)|=0$, so $f(\alpha)=0$. This holds for each $\alpha \in \mathbb{C}$.
- Finally, suppose there were a polynomial function $g(z)$ with no roots. Then the function $f(z)=1 / g(z)$ would be analytic on the whole plane, and $|g(z)|=1 /|f(z)| \rightarrow 0$ for $|z| \rightarrow \infty$, since $\operatorname{deg} g(z) \geq 1$. But by Liouville, $f(z)$ can only be the zero constant function, a contradiction.
- Note that the innocent-looking non-analytic function:

$$
f(z)=z \bar{z}+1=|z|^{2}+1
$$

has no roots! Analytic functions are very special.

$$
f(z)=z^{\wedge} 2+(1+i) z+1
$$

$$
f(z)=z^{\wedge} 2-1
$$

$$
f(z)=z^{\wedge} 2
$$

