
Math 418H Fall 2005

Lecture: Mon 10/24

1. Picturing complex functions

• A complex function f : C → C , f(x+ iy) = u(x, y)+ i v(x, y) has
real component u(x, y) and imaginary component v(x, y), where
u, v : R2 → R are real functions on C = R2.

• This is the same thing as a vector field f : R2 → R2 , f(x, y) =
(u(x, y), v(x, y)), with x-component u(x, y) and y-component v(x, y).
This can be pictured by a field plot: draw each arrow f(x, y) with
its base at the point (x, y).

• Example 1: The complex function f(z) = iz is equivalent to the
vector field: f(x, y) = (−y, x) whose field plot has arrows circu-
lating around the origin, with length proportional to their distance
from the origin. This is the velocity field of a turn-table.

For a general α = r cis θ, the field plot of f(z) = α z is a vortex
centered at the origin, with the arrows rotated by angle θ away
from the outward direction, like the velocity field of water swirling
down the drain.

• Example 2: The complex function f(z) = z2 +(1+i)z+1 is equiv-
alent to the vector field f(x, y) = (x2−y2+x−y+1 , 2xy+y+x)

• Example 3: The complex function f(z) = z, complex conjugate,
is equivalent to the vector field f(x, y) = (x,−y).

2. Derivative of a vector field

• An arbitrary vector field f(x, y) = (u(x, y), v(x, y)) has a deriva-
tive matrix:

Df :=

[
ux uy

vx vy

]
,

where

ux(x, y) =
∂u

∂x
:= lim

ε→0

u(x+ε, y) − u(x, y)

ε

is the partial derivative of u(x, y) in the x-direction, etc.

• If f : R → R is an ordinary real function, its derivative f ′(a) gives
the slope of the best linear approximation to f(x) near x = a : for
small ε, we have:

f(a+ε) ≈ f(a) + f ′(a) ε ,



which is just unravelling the definition of derivative:

f ′(a) ≈ f(a+ε) − f(a)

ε
.

Similarly, for a vector field f : R2 → R2, the derivative matrix
Df(a, b) gives the best linear-function approximation near the
point (a, b) : for small (ε1, ε2), we have:

f(a+ε1, b+ε2) ≈ f(a, b) + Df(a, b) ·
[

ε1

ε2

]
,

where the last operation is matrix multiplication.

• Example 2: For f(x, y) = (x2−y2+x−y+1 , 2xy+y+x) , we have:

Df(x, y) =

[
2x+1 2y+1

−2y−1 2x+1

]

• Example 3: For f(x, y) = (x,−y) , we have:

Df(x, y) =

[
1 0
0 −1

]

3. Complex analytic functions

• We say a complex function f(x + iy) = u(x, y) + i v(x, y) is com-
plex analytic (or just analytic) if any of the following equivalent
conditions apply.

• The partial derivatives of f(z) = f(x + iy) in the real and imagi-
nary directions are equal:

∂f(x + iy)

∂x
= lim

ε→0

f(z + ε) − f(z)

ε
= ux(x, y) + ivx(x, y)

!
=

∂f(x + iy)

∂iy
= lim

ε→0

f(z + iε) − f(z)

iε
= vy(x, y) − iuy(x, y) .

We define the complex derivative f ′(z) to be the common value
of these partial derivatives.

• For every value z = x + iy, the derivative matrix Df(x, y) is a
complex multiplication matrix Mc+id for some c + id ∈ C:

Df :=

[
ux uy

vx vy

]
=

[
c −d
d c

]
.



We define the complex derivative f ′(z) to be the complex number
in this multiplication matrix:

f ′(z) := c + id = ux + ivx = vy − iuy .

• The component functions of f(x + iy) = u(x, y) + iv(x, y) satisfy
the Cauchy-Riemann partial differential equations:

ux = vy , vx = −uy .

4. Examples: analytic and non-analytic functions

• Example 1: f(z) = iz , f(x, y) = (−y, x) ,

f ′(z) = (ux, vx) = (vy,−uy) = (0, 1) = i .

• Example 2: f(z) = z2+(1+1)z+1 , f(x, y) = (x2−y2+x−y+1 , 2xy+y+x) ,

f ′(z) = (ux, vx) = (vy,−uy) = (2x + 1, 2y + 1) = 2z + 1 .

• Example 3: f(z) = z , f(x, y) = (x,−y) ,

f ′(z) = (ux, vx) = (1, 0)
?
= (vy,−uy) = (−1, 0) .

The equality does not hold, so f(z) is not analytic at any z !

• For a general complex analytic f(z) with roots z = r1, . . . , rn, the
field plot has a vortex around each ri which looks approximately
like the vortex of g(z) = α z for α = f ′(ri) .

5. Combining analytic functions

• f(z) = α (constant function) and f(z) = z are analytic

• If f(z) and g(z) are analytic, then:

– f(z) + g(z) is analytic and (f(z) + g(z))′ = f ′(z) + g′(z).

– f(z) g(z) is analytic and (f(z) g(z))′ = f ′(z)g(z) + f(z)g′(z).

– f(z)/g(z) is analytic for all z where g(z) �= 0 , and

(
f(z)

g(z)

)′
=

f ′(z)g(z) − f(z)g′(z)

g(z) 2
.

• Corollary: All polynomial functions f(z) ∈ C[z] are complex an-
alytic for every z. All rational functions f(z)/g(z) are complex
analytic except at the points z where g(z) = 0.



6. Fundamental Theorem of Algebra

• Theorem: Any polynomial

f(z) = a0 + a1z + · · ·+ anzn ∈ C[z]

of degree n ≥ 1 has at least one complex root z = α with f(α) = 0.

• This means: the field plot of any polynomial f(z) has at least one
vortex. The plot of a high-degree polynomial is very complicated,
so this is not at all obvious!

Alternatively: any complex polynomial of degree n can be com-
pletely split into n linear factors:

f(z) = an(z − r1) · · · (z − rn) .

This will have fewer than n vortices if some of the ri’s coincide.

• Strategy of Proof: First, Cauchy’s Mean Value Theorem says that
for any circle in the complex plane, the value of an analytic func-
tion at the center is a certain average of the values on the circle.

• Next, Liouville’s Theorem: Let f(z) be complex analytic on the
whole plane, with lim|z|→∞ f(z) = 0 , meaning that f(z) becomes
very small when z is far from the origin. Then f(z) can only be
the zero constant function: f(z) = 0 for all z.

Proof: Consider any particular α , and take a very large circle
centered at α. Given ε > 0, by assumption we can take an α-
centered circle large enough so that |f(z)| < ε for z on the circle.
By Cauchy, the value f(α) is the average of the values f(z) on
the circle, so |f(α)| < ε. Since this is true for any ε > 0, we must
have |f(α)| = 0, so f(α) = 0 . This holds for each α ∈ C .

• Finally, suppose there were a polynomial function g(z) with no
roots . Then the function f(z) = 1/g(z) would be analytic on
the whole plane, and |g(z)| = 1/|f(z)| → 0 for |z| → ∞, since
deg g(z) ≥ 1 . But by Liouville, f(z) can only be the zero constant
function, a contradiction.

• Note that the innocent-looking non-analytic function:

f(z) = zz̄ + 1 = |z|2 + 1

has no roots! Analytic functions are very special.
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f(z) = z^2 + (1+i)z + 1
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f(z) = z^2 - 1
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