Lecture: Mon 10/31

1. Electromagnetic vector fields

- Let $g(x, y)=(r(x, y), s(x, y))$ be any vector field.
- Divergence of g measures rate of outflow from each point:

$$
\operatorname{div} g(x, y):=\frac{\partial r}{\partial x}+\frac{\partial s}{\partial y}=r_{x}(x, y)+s_{y}(x, y)
$$

- Curl of g measures counter-clockwise torque (rotational force) around each point:

$$
\operatorname{curl} g(x, y):=\frac{\partial s}{\partial x}-\frac{\partial r}{\partial y}=s_{x}(x, y)-r_{y}(x, y)
$$

- An electric force field $g(x, y)$ satisfies Maxwell's equations: the curl and divergence must vanish at all points:

$$
\operatorname{curl} g(x, y)=\operatorname{div} g(x, y)=0
$$

That is:

$$
\text { (Maxwell) } \quad r_{x}=-s_{y} \quad, \quad r_{y}=s_{x}
$$

These equations hold in a region with no charge present. In general, $\operatorname{div} g$ is the charge density at each point.
2. Complex analytic vs electric vector fields

- Let $f(x+i y)=u(x, y)+i v(x, y)$ be complex analytic, meaning it satisfies:

$$
\text { (Cauchy-Riemann) } \quad u_{x}=v_{y} \quad, \quad u_{y}=-v_{x}
$$

- Proposition: Given $f(x+i y)$, let $g(x, y)$ be the complex conjugate vector field: $g(z):=\overline{f(x+i y)}$,

$$
g(x, y):=(u(x, y),-v(x, y)) .
$$

Then clearly:

$$
f(x, y) \text { complex analytic } \Longleftrightarrow g(x, y) \text { satisfies Maxwell. }
$$

- Example: $f(z)=z, \quad g(x, y)=(x,-y)$. Then $f(z)$ is analytic everywhere and curl $g=\operatorname{div} g=0$.
- Example: $f(z)=1 / z$,

$$
g(x, y)=\frac{(x, y)}{x^{2}+y^{2}}=\text { point-charge }
$$

an outward force proportional to inverse of distance (which is the 2-dimensional version of Coulomb's Law). Then $f(z)$ is analytic except at the origin, and $g(x, y)$ satisfies Maxwell except at the origin, where there is a point-charge with infinite charge-density: $\operatorname{div} g(0,0)=\infty$.

- Example: $g(z)=(x, y)$ corresponds to $f(z)=\bar{z}$. Then $f(z)$ is not analytic, and $g(x, y)$ does not satisfy Maxwell's equations, since $\operatorname{curl} g(x, y)=0$ but $\operatorname{div} g(x, y)=2$ everywhere.

3. Parametrized curves in the plane

- Parametrized curve: $\mathcal{C}=c(t)=(x(t), y(t))$ for $a \leq t \leq b$.

We can imagine $c(t)$ as the position at time t of a particle moving along \mathcal{C} from the start point $c(a)=(x(a), y(a))$ to the end point $c(b)=(x(b), y(b)) \cdot \mathcal{C}$ is a closed curve if $c(a)=c(b)$.

- Tangent vector at point $c(t)$:

$$
c^{\prime}(t)=\lim _{\epsilon \rightarrow 0} \frac{c(t+\epsilon)-c(t)}{\epsilon}=\left(x^{\prime}(t), y^{\prime}(t)\right)
$$

Rephrasing: for two points $c_{0}=c\left(t_{0}\right)$ and $c_{1}=c\left(t_{1}\right)$ close together along \mathcal{C}, the increment vector between them is approximately the velocity vector multiplied by the time increment:

$$
c_{1}-c_{0} \approx c^{\prime}\left(t_{1}\right)\left(t_{1}-t_{0}\right)=c^{\prime}\left(t_{1}\right) \Delta t_{1} .
$$

- Example: $\mathcal{C}=c(t)=(\cos t, \sin t)$ for $0 \leq t \leq 2 \pi$, unit circle. Tangent vector at $c(t)$ is: $c^{\prime}(t)=(-\sin t, \cos t)$.
For $t=\pi / 2, \quad c(t)=(0,1), \quad c^{\prime}(t)=(-1,0)$.

4. Circulation around a curve

- We wish to measure the total drag or circulation of $g(x, y)$ pushing around a closed curve \mathcal{C}. This is a large-scale version of curl g, which measures the rate of circulation of $g(x, y)$ near a particular point.
- Drag: The drag of a constant vector field $g(x, y)=(c, d)$ along the line segment from $(0,0)$ to (p, q) is the dot-product:

$$
(c, d) \cdot(p, q)=c p+d q
$$

the product of vector lengths times cos of the angle between.

- Circulation line integral of $g(x, y)$ along \mathcal{C}. Mark N points of \mathcal{C} :

$$
c_{0}, c_{1}, \ldots, c_{N}=c_{0}
$$

with $c_{j}=c\left(t_{j}\right)$. We have:

$$
c_{j}-c_{j-1} \approx c^{\prime}\left(t_{j}\right)\left(t_{j}-t_{j-1}\right)=c^{\prime}\left(t_{j}\right) \Delta t_{j}
$$

We can compute the total circulation of $g(x, y)$ around \mathcal{C} by adding up the drag along each tiny line segment from c_{j-1} to c_{j} :

$$
\begin{aligned}
\oint_{\mathcal{C}} g(x, y) \cdot d c & :=\lim _{N \rightarrow \infty} \sum_{j=1}^{N} g\left(c_{j}\right) \cdot\left(c_{j}-c_{j-1}\right) \\
& :=\lim _{N \rightarrow \infty} \sum_{j=1}^{N} g\left(c\left(t_{j}\right)\right) \cdot c^{\prime}\left(t_{j}\right) \Delta t_{j} \\
& =\int_{t=a}^{b} g(c(t)) \cdot c^{\prime}(t) d t
\end{aligned}
$$

Note that $g(c(t)) \cdot c^{\prime}(t)$ is a scalar-valued function of t, so the last line is an ordinary integral.

- Example: Let $\mathcal{C}=(\cos t, \sin t)$ for $0 \leq t \leq 2 \pi$, and $g(x, y)=(1,0)$ a horizontal constant vector field. Since the drag on top of the curve cancels the opposite drag on the bottom, we expect zero circulation. In fact:

$$
\begin{aligned}
\oint_{\mathcal{C}} g(c) \cdot d c & =\int_{t=0}^{2 \pi} g(\cos t, \sin t) \cdot\left(\cos ^{\prime} t, \sin ^{\prime} t\right) d t \\
& =\int_{t=0}^{2 \pi}(1,0) \cdot(-\sin t, \cos t) d t=\int_{t=0}^{2 \pi}-\sin t d t=0
\end{aligned}
$$

5. Global outflow via line integrals

- We wish to measure the total outflow or flux of $g(x, y)$ across a closed curve \mathcal{C}. This is a large-scale version of $\operatorname{div} g(x, y)$, which measures the rate of outflow near a particular point.
- Flux: The flow of a constant vector field $g(x, y)=(c, d)$ across a line segment from $(0,0)$ to (p, q) is the cross-product:

$$
(c, d) \times(p, q)=c q-d p
$$

the product of vector lengths times sin of the angle between.

- Flux line integral of $g(x, y)$ along \mathcal{C}. As before, we compute the total outflow as:

$$
\oint_{\mathcal{C}} g(x, y) \times d c=\lim _{N \rightarrow \infty} \sum_{j=1}^{N} g\left(c_{j}\right) \times\left(c_{j}-c_{j-1}\right)=\int_{t=a}^{b} g(c(t)) \times c^{\prime}(t) d t
$$

- Example: Again let $\mathcal{C}=(\cos t, \sin t)$ and $g(x, y)=(1,0)$. Since inflow on the left should cancel outflow on the right, we expect zero flux. In fact:

$$
\oint_{\mathcal{C}} g(c) \times d c=\int_{t=0}^{2 \pi}(1,0) \times(-\sin t, \cos t) d t=\int_{t=0}^{2 \pi} \cos t d t=0 .
$$

6. Green's Theorems: global versus local

- Let R be a region on the plane whose boundary is a simple closed curve \mathcal{C} (oriented counter-clockwise). Let $g(x, y)$ be vector field which is defined and differentiable at every point of R.
- Theorem: The circulation of g around the boundary curve is equal to the total curl of g inside the region:

$$
\oint_{\mathcal{C}} g(c) \cdot d c=\iint_{R} \operatorname{curl} g(x, y) d x d y
$$

where the right side is a double integral over the region R.

- Theorem: The flux of g around the boundary curve is equal to the total divergence of g inside the region:

$$
\oint_{\mathcal{C}} g(c) \times d c=\iint_{R} \operatorname{div} g(x, y) d x d y .
$$

- Proof: Divide R into little regions, and write the total line integral as a sum of line integrals over tiny regions. Inside each tiny region, $g(x, y)$ can be replaced by its linear approximation, so that we can compute the tiny line integrals to be the area times curl g or $\operatorname{div} g$.
- Corollary: If $g(x, y)$ is an electical force field with curl $g=\operatorname{div} g=$ 0 inside the region R, then g has zero circulation and flux over the boundary curve \mathcal{C} :

$$
\oint_{\mathcal{C}} g(c) \cdot d c=\oint_{\mathcal{C}} g(c) \times d c=0
$$

