Lecture: Fri 11/18

1. Group Theory: Algebra of Symmetry

- Let X be a geometric object, a set of points with some geometric structure. A symmetry of X is a mapping of X onto itself, preserving the structure: $\pi: X \rightarrow X$.
- Given two symmetries of X, we can compose them to get another symmetry: $\gamma=\alpha \cdot \beta$ means $\gamma: X \rightarrow X$ with $\gamma(x):=\alpha(\beta(x))$ for each point $x \in X$.
- Group: (G, \bullet) is the set $G=\operatorname{Sym}(X)$ of all symmetries of an object X, along with the composition operation \bullet.
- Example: Let X be the human body. There are two symmetries: the identity mapping ι which takes each point to itself: $\iota(x):=x$; and the bilateral reflection σ which switches each point on the left with the corresponding point on the right. Flipping twice takes every point to itself, so $\sigma \cdot \sigma=\iota$. Further, ι is an identity element for this operation: $\iota \cdot \sigma=\sigma \bullet \iota=\sigma$.

2. Formal definition of a group

- (G, \cdot), where G is a set and • is a binary operation on G which satisfies the same axioms as multiplication in a ring.
- associativity $(\alpha \cdot \beta) \cdot \gamma=\alpha \cdot(\beta \cdot \gamma)$
- identity: there is an element ι with $\iota \cdot \alpha=\alpha \cdot \iota=\alpha$
- inverses: for every α there is a $\beta=\alpha^{-1}$ with $\alpha \bullet \beta=\beta \bullet \alpha=\iota$
- Clearly, $G=\operatorname{Sym}(X)$ with the composition • satisfies these axioms:

$$
(\alpha \cdot \beta) \cdot \gamma(x)=\alpha \cdot(\beta \cdot \gamma)(x)=\alpha(\beta(\gamma(x))) .
$$

Also, the identity symmetry ι is the group identity, and the inverse of a symmetry is the map which undoes it: $\alpha^{-1}(x)=y$, where $y=\alpha(x)$.

- It is more difficult, but possible, to show that any group is the symmetry group of some object X (indeed, there are many such).

3. Symmetric group $G=S_{n}$

- $X=\{1,2, \ldots, n\}$, an unstructured set of n points. A symmetry is any permutation (a shuffling, or one-to-one correspondence) of these points.
- Denote permutations with the two-line notation: $\pi=\left(\begin{array}{cccc}1 & 2 & \cdots & n \\ \pi(1) & \pi(2) & \cdots & \pi(n)\end{array}\right)$
- Example: For $n=3, X=\{1,2,3\}$ we have:

$$
S_{3}=\left\{\iota=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)\right\}
$$

The permutation $\pi=\left(\begin{array}{l}123 \\ 3\end{array} 12\right)$ means $\pi(1)=3, \pi(2)=1, \pi(3)=$ 2.

- The group operation means doing one permutation after the other. E.g.:
$\alpha=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right), \beta=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right), \alpha \cdot \beta=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right), \beta \cdot \alpha=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right)$.
since $\alpha(\beta(1))=\alpha(2)=3$, so $(\alpha \cdot \beta)(1)=3$, etc.
- In general, the total number of permuations is $\left|S_{n}\right|=n$!, since we have n choices for $\pi(1)$, then $(n-1)$ different choices for $\pi(2)$, etc.

4. Symmetries of a triangle $G=D_{3}$

- $X=$ an equilateral triangle, considered as a rigid object in the plane. A symmetry is a map $\alpha: X \rightarrow X$ which preserves the distance between points (say, a reflection or rotation of the triangle onto itself). We call this symmetry group $G=D_{3}$.
- Each corner must map to another corner under a symmetry. Labelling the corners by $\{1,2,3\}$, we can consider any symmetry as a permutation: $D_{3} \subset S_{3}$. For example, the reflection which fixes 1 and switches 2,3 is the permutation $\binom{123}{132}$.
- We can easily see that every permutation in S_{3} corresponds to a symmetry of the triangle, so $D_{3}=S_{3}$.
- Exercise: Write the 6×6 multiplication table of $D_{3}=S_{3}$. It helps to denote each element by a letter (e.g., ι, α, β defined above).
- Exercise: Work all this out for D_{4}, the symmetries of a square. Note that not every permutation in S_{4} corresponds to a symmetry of the square. Indeed, $\left|D_{4}\right|=8$, but $\left|S_{4}\right|=24$.

