Math 418H

Lecture: Fri 11/18

- 1. Group Theory: Algebra of Symmetry
 - Let X be a geometric object, a set of points with some geometric structure. A symmetry of X is a mapping of X onto itself, preserving the structure: $\pi : X \to X$.
 - Given two symmetries of X, we can compose them to get another symmetry: $\gamma = \alpha \cdot \beta$ means $\gamma : X \to X$ with $\gamma(x) := \alpha(\beta(x))$ for each point $x \in X$.
 - Group: (G, \cdot) is the set G = Sym(X) of all symmetries of an object X, along with the composition operation \cdot .
 - Example: Let X be the human body. There are two symmetries: the identity mapping ι which takes each point to itself: $\iota(x) := x$; and the bilateral reflection σ which switches each point on the left with the corresponding point on the right. Flipping twice takes every point to itself, so $\sigma \cdot \sigma = \iota$. Further, ι is an identity element for this operation: $\iota \cdot \sigma = \sigma \cdot \iota = \sigma$.
- 2. Formal definition of a group
 - (G, \cdot) , where G is a set and \cdot is a binary operation on G which satisfies the same axioms as multiplication in a ring.
 - associativity $(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$
 - identity: there is an element ι with $\iota \cdot \alpha = \alpha \cdot \iota = \alpha$
 - inverses: for every α there is a $\beta = \alpha^{-1}$ with $\alpha \cdot \beta = \beta \cdot \alpha = \iota$
 - Clearly, G = Sym(X) with the composition satisfies these axioms:

$$(\alpha \cdot \beta) \cdot \gamma(x) = \alpha \cdot (\beta \cdot \gamma)(x) = \alpha(\beta(\gamma(x))).$$

Also, the identity symmetry ι is the group identity, and the inverse of a symmetry is the map which undoes it: $\alpha^{-1}(x) = y$, where $y = \alpha(x)$.

• It is more difficult, but possible, to show that any group is the symmetry group of some object X (indeed, there are many such).

- 3. Symmetric group $G = S_n$
 - $X = \{1, 2, ..., n\}$, an unstructured set of *n* points. A symmetry is any permutation (a shuffling, or one-to-one correspondence) of these points.
 - Denote permutations with the *two-line notation*: $\pi = \begin{pmatrix} 1 & 2 & \cdots & n \\ \pi(1) & \pi(2) & \cdots & \pi(n) \end{pmatrix}$
 - *Example:* For n = 3, $X = \{1, 2, 3\}$ we have:

$$S_{3} = \left\{ \iota = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \right\}$$

The permutation $\pi = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ means $\pi(1) = 3, \pi(2) = 1, \pi(3) = 2$.

• The group operation means doing one permutation after the other. E.g.:

$$\alpha = \begin{pmatrix} 123\\132 \end{pmatrix}, \beta = \begin{pmatrix} 123\\231 \end{pmatrix}, \alpha \cdot \beta = \begin{pmatrix} 123\\321 \end{pmatrix}, \beta \cdot \alpha = \begin{pmatrix} 123\\213 \end{pmatrix}.$$

since $\alpha(\beta(1)) = \alpha(2) = 3$, so $(\alpha \cdot \beta)(1) = 3$, etc.

- In general, the total number of permuations is $|S_n| = n!$, since we have *n* choices for $\pi(1)$, then (n-1) different choices for $\pi(2)$, etc.
- 4. Symmetries of a triangle $G = D_3$
 - X = an equilateral triangle, considered as a rigid object in the plane. A symmetry is a map $\alpha : X \to X$ which preserves the distance between points (say, a reflection or rotation of the triangle onto itself). We call this symmetry group $G = D_3$.
 - Each corner must map to another corner under a symmetry. Labelling the corners by $\{1, 2, 3\}$, we can consider any symmetry as a permutation: $D_3 \subset S_3$. For example, the reflection which fixes 1 and switches 2,3 is the permutation $\begin{pmatrix} 123\\ 132 \end{pmatrix}$.
 - We can easily see that *every* permutation in S_3 corresponds to a symmetry of the triangle, so $D_3 = S_3$.
 - *Exercise:* Write the 6×6 multiplication table of $D_3 = S_3$. It helps to denote each element by a letter (e.g., ι, α, β defined above).
 - *Exercise:* Work all this out for D_4 , the symmetries of a square. Note that *not* every permutation in S_4 corresponds to a symmetry of the square. Indeed, $|D_4| = 8$, but $|S_4| = 24$.