Lecture: Wed 11/2

1. Complex line integral

- Given a complex derivative $F^{\prime}(z)$, we would like to recover the orginal function $F(z)$ by integrating. This is done as follows: let \mathcal{C} be a non-closed curve with start-point $\alpha=c(a)$ and end-point $\beta=c(b)$. Mark N points $\alpha=c_{0}, c_{1}, \ldots, c_{N}=\beta$, with $c_{j}=c\left(t_{j}\right)$. Then:

$$
\begin{aligned}
F(\beta)-F(\alpha) & =\lim _{N \rightarrow \infty} \sum_{j=1}^{N} F\left(c_{j}\right)-F\left(c_{j-1}\right) \\
& =\lim _{N \rightarrow \infty} \sum_{j=1}^{N} \frac{F\left(c_{j}\right)-F\left(c_{j-1}\right)}{c_{j}-c_{j-1}} \frac{c_{j}-c_{j-1}}{\Delta t_{j}} \Delta t_{j} \\
& =\int_{t=a}^{b} F^{\prime}(c(t)) c^{\prime}(t) d t
\end{aligned}
$$

- Thus, the correct integral to use is the complex line integral:

$$
\oint_{\mathcal{C}} f(z) d z:=\int_{t=a}^{b} f(c(t)) c^{\prime}(t) d t
$$

where the product in the integral is complex multiplication, and the result is a complex number. That is, if $f(x+i y)=u(x, y)+$ $i v(x, y)$ and $c(t)=x(t)+i y(t)$, then:

$$
\begin{aligned}
\oint_{\mathcal{C}} f(z) d z= & \int_{t=a}^{b} u(c(t)) x^{\prime}(t)-v(c(t)) y^{\prime}(t) d t \\
& +i \int_{t=a}^{b} u(c(t)) y^{\prime}(t)+v(c(t)) x^{\prime}(t) d t
\end{aligned}
$$

- Fundamental Theorem of Calculus: If $F(z)$ is analytic, and \mathcal{C} is a (not necessarily closed) curve from α to β, then:

$$
F(\beta)-F(\alpha)=\oint_{\mathcal{C}} F^{\prime}(z) d z
$$

- Example: $f(z)=1 / z, \mathcal{C}=c(t)=(r \cos t, r \sin t)$. Then $f(x+i y)=$ $(x-i y) /\left(x^{2}+y^{2}\right)$, and:

$$
\begin{aligned}
\oint_{\mathcal{C}} f(z) d z & =\int_{t=0}^{2 \pi} f(r \cos t+i r \sin t)\left(r \cos ^{\prime} t+i r \sin ^{\prime} t\right) d t \\
& =\int_{t=0}^{2 \pi} \frac{1}{r^{2}}(r \cos t-i r \sin t)(-r \sin t+i r \cos t) d t \\
& =\int_{t=0}^{2 \pi} i\left(\cos ^{2} t+\sin ^{2} t\right) d t=2 \pi i
\end{aligned}
$$

2. Cauchy Integral Theorem

- Theorem: If R is a plane region whose boundary is the closed curve \mathcal{C}, and $f(z)$ is complex analytic for every $z \in R$, then the complex line integral of $f(z)$ over \mathcal{C} is zero:

$$
\oint f(z) d z=0
$$

- First Proof: If we can find $F(z)$ with $f(z)=F^{\prime}(z)$, and we take $\alpha=\beta$ being the start- and end-point of the closed curve \mathcal{C}, then:

$$
\int_{\mathcal{C}} f(z) d z=F(\alpha)-F(\beta)=0
$$

For example, if $f(z)=z^{2}+1$ then we can take $F(z)=\frac{1}{3} z^{3}+z$. But how do we find such an $F(z)$ in general? For example, $f(z)=1 / z$ does not satisfy the Theorem, so it cannot be the derivative of any function $F(z)$. We need a better proof.

- Second Proof: We reduce the complex line integral of $f(z)$ to circulation and flux integrals of the corresponding electric field, the conjugate $g(z):=\overline{f(z)}$ with curl $g=\operatorname{div} g=0$. First, note that the complex product relates to the dot and cross products as follows:

$$
\alpha \beta=\bar{\alpha} \cdot \beta+\bar{\alpha} \times \beta .
$$

(Just write out real and imaginary parts of both sides.) Thus:

$$
\begin{aligned}
\oint_{\mathcal{C}} f(z) d z & =\int_{t=a}^{b} f(c(t)) c^{\prime}(t) d t \\
& =\int_{t=a}^{b} \overline{f(c(t))} \cdot c^{\prime}(t) d t+i \int_{t=a}^{b} \overline{f(c(t))} \times c^{\prime}(t) d t \\
& =\oint_{\mathcal{C}} g(c) \cdot d c+i \oint_{\mathcal{C}} g(c) \times d c \\
& =\iint_{R} \operatorname{curl} g(x, y) d x d y+i \iint_{R} \operatorname{div} g(x, y) d x d y=0
\end{aligned}
$$

3. Cauchy Mean Value Theorem

- Let $\mathcal{C}=\mathcal{C}(r, \gamma)$ be a circle with radius r and center γ, and suppose $f(z)$ is complex analytic in the disk bounded by \mathcal{C}. Then the average value of $f(z)$ on the circle \mathcal{C} is equal to the value $f(\gamma)$ in the center:

$$
\left.\left.\frac{1}{2 \pi r} \int_{\mathcal{C}(r, \gamma)} f(c(t)) \right\rvert\, c^{\prime}(t)\right) \mid d t=f(\gamma)
$$

- Proof: First, note that $c^{\prime}(t)=i(c(t)-\gamma)$, so:

$$
\begin{aligned}
\oint_{\mathcal{C}} \frac{f(z)}{z-\gamma} d z & =\int_{t=0}^{2 \pi} \frac{f(c(t))}{c(t)-\gamma} c^{\prime}(t) d t \\
& =i \int_{t=0}^{2 \pi} f(c(t)) d t \\
& =\frac{i}{r} \int_{t=0}^{2 \pi} f(c(t))\left|c^{\prime}(t)\right| d t .
\end{aligned}
$$

Thus, the average value can be computed as:

$$
\left.A(r): \left.=\frac{1}{2 \pi r} \int_{\mathcal{C}(r, \gamma)} f(c(t)) \right\rvert\, c^{\prime}(t)\right) \left\lvert\, d t=\frac{1}{2 \pi i} \oint_{\mathcal{C}(r, \gamma)} \frac{f(z)}{z-\gamma} d z\right.
$$

Let \mathcal{D} be the closed curve which first rounds the circle $\mathcal{C}(r, \gamma)$ counterclockwise, then traverses a radial line segment from radius r to a smaller radius ϵ, then rounds the circle $\mathcal{C}(\epsilon, \gamma)$ clockwise, then goes back along the same radis from ϵ to r.
The closed curve \mathcal{D} is the boundary of a ring-shaped region in which $f(z) /(z-\gamma)$ is analytic, so that the complex integral vanishes by Cauchy's Theorem:
$0=\oint_{\mathcal{D}} \frac{f(z)}{z-\gamma} d z=\oint_{\mathcal{C}(r, \gamma)} \frac{f(z)}{z-\gamma} d z-\oint_{\mathcal{C}(\epsilon, \gamma)} \frac{f(z)}{z-\gamma} d z .=A(r)-A(\epsilon)$.
That is, the average does not depend on the radius of the circle. But $f(z)$ is continuous, so as the circle $\mathcal{C}(r, \epsilon)$ approaches the central point γ, the average value of $f(z)$ on the circle approaches $f(\gamma)$:

$$
A(r)=A(\epsilon)=\lim _{\epsilon \rightarrow 0} A(\epsilon)=f(\gamma) .
$$

