1. Dihedral group D_{n}

- $D_{n}:=\operatorname{Sym}(X)$ where $X \subset \mathbb{R}^{2}$ is a regular n-gon in the plane, with its rigid structure. That is, a symmetry $\pi: X \rightarrow X$ must preserve distance: $\operatorname{dist}(\pi(x), \pi(y))=$ $\operatorname{dist}(x, y)$ for each pair of points $x, y \in X$.
- A symmetry $\pi: X \rightarrow X$ must permute the n vertices, and is determined by this permutation. Thus we may consider the dihedral group as a subgroup of the symmetric group (all permutations): $D_{n} \subset S_{n}$.
- A symmetry of the n-gon must take adjacent vertices to adjacent vertices. Thus, there are n choices for $\pi(1)$, but only 2 choices for $\pi(2)=\pi(1) \pm 1$, since $\pi(2)$ must be one of the vertices adjacent to $\pi(1)$. Furthermore, $\pi(3)$ must be the unique remaining vertex adjacent to $\pi(2)$, etc. Thus, the number of symmetries is: $\left|D_{n}\right|=2 n$.
- Consider the reflection and the rotation:

$$
\alpha:=\left(\begin{array}{ccccc}
1 & 2 & \cdots & n-1 & n \\
n & n-1 & \cdots & 2 & 1
\end{array}\right) \quad \beta:=\left(\begin{array}{ccccc}
1 & 2 & \cdots & n-1 & n \\
2 & 3-1 & \cdots & n & 1
\end{array}\right) .
$$

We have the identity ι, the $n-1$ rotation symmetries $\beta, \beta^{2}, \ldots, \beta^{n-1}$, and we may check that $\alpha, \alpha \beta, \alpha \beta^{2}, \ldots, \alpha \beta^{n-1}$ are n distinct reflection symmetries. Thus we have listed all $2 n$ elements:

$$
D_{n}=\left\{\begin{array}{c}
\iota, \beta, \beta^{2}, \ldots, \beta^{n-1} \\
\alpha, \alpha \beta, \alpha \beta^{2}, \ldots, \alpha \beta^{n-1}
\end{array}\right\}
$$

- The relations:

$$
\alpha^{2}=\beta^{n}=\iota \quad, \quad \beta \alpha=\alpha \beta^{n-1}
$$

allow us to multiply arbitrary expressions of the form $\alpha^{i} \beta^{j}$. Rewrite this as $\beta \alpha=\alpha \beta^{-1}$, so that:

$$
\begin{aligned}
& \beta^{j} \cdot \beta^{k}=\beta^{j+k \bmod n} \quad, \quad \beta^{j} \cdot \alpha \beta^{k}=\alpha \beta^{-j+k \bmod n} \\
& \alpha \beta^{j} \cdot \beta^{k}=\alpha \beta^{j+k \bmod n} \quad, \quad \alpha \beta^{j} \cdot \alpha \beta^{k}=\beta^{-j+k \bmod n} .
\end{aligned}
$$

2. Rotation vs reflection symmetries

- Cyclic group $C_{n}=\left\{\iota, \beta, \beta^{2}, \ldots, \beta^{n-1}\right\}$ is a group generated by one element β with the relation $\beta^{n}=\iota$, and multiplication $\beta^{j} \beta^{k}=\beta^{j+k \bmod n}$.
- Clearly $C_{n} \subset D_{n}$ is a subgroup. It should thus correspond to the symmetries of an n-gon with decorations, i.e. extra structure which decreases the number of symmetries. Indeed: $C_{n}=\operatorname{Sym}(X)$ where X is an n-gon with an arrow drawn on each edge.

