Math~418H

- 1. Dihedral group D_n
 - $D_n := \text{Sym}(X)$ where $X \subset \mathbb{R}^2$ is a regular *n*-gon in the plane, with its rigid structure. That is, a symmetry $\pi : X \to X$ must preserve distance: $\text{dist}(\pi(x), \pi(y)) = \text{dist}(x, y)$ for each pair of points $x, y \in X$.
 - A symmetry $\pi : X \to X$ must permute the *n* vertices, and is determined by this permutation. Thus we may consider the dihedral group as a subgroup of the symmetric group (all permutations): $D_n \subset S_n$.
 - A symmetry of the *n*-gon must take adjacent vertices to adjacent vertices. Thus, there are *n* choices for $\pi(1)$, but only 2 choices for $\pi(2) = \pi(1) \pm 1$, since $\pi(2)$ must be one of the vertices adjacent to $\pi(1)$. Furthermore, $\pi(3)$ must be the unique remaining vertex adjacent to $\pi(2)$, etc. Thus, the number of symmetries is: $|D_n| = 2n$.
 - Consider the reflection and the rotation:

$$\alpha := \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ n & n-1 & \cdots & 2 & 1 \end{pmatrix} \qquad \beta := \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ 2 & 3-1 & \cdots & n & 1 \end{pmatrix}.$$

We have the identity ι , the n-1 rotation symmetries $\beta, \beta^2, \ldots, \beta^{n-1}$, and we may check that $\alpha, \alpha\beta, \alpha\beta^2, \ldots, \alpha\beta^{n-1}$ are n distinct reflection symmetries. Thus we have listed all 2n elements:

$$D_n = \left\{ \begin{array}{ccc} \iota, & \beta, & \beta^2, & \dots, & \beta^{n-1} \\ \alpha, & \alpha\beta, & \alpha\beta^2, & \dots, & \alpha\beta^{n-1} \end{array} \right\}$$

• The relations:

$$\alpha^2 = \beta^n = \iota \quad , \quad \beta \alpha = \alpha \beta^{n-1}$$

allow us to multiply arbitrary expressions of the form $\alpha^i \beta^j$. Rewrite this as $\beta \alpha = \alpha \beta^{-1}$, so that:

$$\begin{split} \beta^{j} \cdot \beta^{k} &= \beta^{j+k \operatorname{mod} n} \qquad , \qquad \beta^{j} \cdot \alpha \beta^{k} &= \alpha \beta^{-j+k \operatorname{mod} n} \\ \alpha \beta^{j} \cdot \beta^{k} &= \alpha \beta^{j+k \operatorname{mod} n} \qquad , \qquad \alpha \beta^{j} \cdot \alpha \beta^{k} &= \beta^{-j+k \operatorname{mod} n} \end{split}$$

- 2. Rotation vs reflection symmetries
 - Cyclic group $C_n = \{\iota, \beta, \beta^2, \dots, \beta^{n-1}\}$ is a group generated by one element β with the relation $\beta^n = \iota$, and multiplication $\beta^j \beta^k = \beta^{j+k \mod n}$.
 - Clearly $C_n \subset D_n$ is a subgroup. It should thus correspond to the symmetries of an *n*-gon with *decorations*, i.e. extra structure which decreases the number of symmetries. Indeed: $C_n = \text{Sym}(X)$ where X is an *n*-gon with an arrow drawn on each edge.