
Math 418H Fall 2005

Lecture: Mon 11/7

1. Fundamental Theorem of Algebra

• Theorem: Any polynomial

f(z) = a0 + a1z + · · ·+ anzn ∈ C[z]

of degree n ≥ 1 has at least one complex root z = α with f(α) = 0.

• First step: We give a proof by contradiction. Suppose f(z) were a
polynomial with no roots . Then its reciprocal g(z) := 1/f(z) would
be analytic everywhere. Furthermore:

lim
|z|→∞

|f(z)| = lim
|z|→∞

|anz
n| = ∞ ,

meaning that f(z) has large radius if z is far from the origin. Thus
lim|z|→∞ g(z) = 0 , meaning that g(z) has small radius when z is far
from the origin.

• Second step, Liouville’s Theorem: Let g(z) be a function which is
complex analytic on the whole plane, with lim|z|→∞ g(z) = 0 . Then
g(z) can only be the zero constant function: g(z) = 0 for all z.

Proof: Consider any particular γ ∈ C , and take a very large circle
C(r, γ) with radius r and center γ. Given ε > 0, by assumption we
can take radius large enough so that |g(z)| < ε for z on the circle
C(r, γ). By Cauchy’s Mean Value Theorem, the value g(γ) at the
center is the average of the value of g(z) on the circle C(r, γ) = c(t):

g(γ) = Avg
c∈C(r,γ)

g(c) :=
1

2πr

∫
g(c(t)) |c′(t)| dt .

Taking lengths and applying the triangle inequality,

|Avg
C

F (c) | ≤ Avg
C

|F (c)| ,

we have:
|g(γ)| = | Avg

C(r,γ)

g(c) | ≤ Avg
C(r,γ)

|g(c)| ≤ ε .

Since this is true for any ε > 0, we must have |g(γ)| = 0 . This holds
for each γ ∈ C .

• Third step: Since g(z) = 1/f(z) is not the zero constant function,
we have a contradiction. Thus there cannot exist any non-vanishing
polynomial f(z) ∈ C[z] .



• Paraphrasing: Liouville’s Theorem says that if a non-constant an-
alytic function becomes very small as |z| → ∞ , then g(z) must
compensate for this by having non-anlytic points somewhere (for ex-
ample, blowing up to infinity). Hence, if an analytic f(z) becomes
very large as |z| → ∞ (as does a polynomial), then f(z) must com-
pensate for this by vanishing somewhere, i.e., having roots.

• This is a pure existence proof: it shows that a root-free polynomial
function f(z) would lead to an analytic function g(z) violating the
Cauchy Mean Value Theorem. The proof gives no clue how to find
a root for a given f(z): we will give an algorithm for this next time.

2. Factoring polynomials

• Proposition: Every monic complex polynomial f(z) of degree n can
be uniquely factored in C[z] as a product of n linear functions.

f(z) = (z−α1) · · · (z−αn) .

That is, the irreducible polynomials of C[z] are linear.

Proof: By the Fundamental Theorem, f(z) has a root z = α and
thus a linear factor: f(z) = (z−α1) f1(z) , where f1(z) has degree
n−1 . Repeat this for f1(z) until all factors are linear.

• Proposition: Every monic real polynomial f(z) of degree n can be
uniquely factored in R[z] as a product of linear and quadratic func-
tions:

f(z) = (z − α1) · · · (z − αk) q1(z) · · · q�(z) ,

where αj ∈ R , qj(z) ∈ R[z] has degree 2, and k + 2� = n. That is,
the irreducible polynomials of R[z] are linear and quadratic.

Proof: A real polynomial f(z) ∈ R[z] can be factored into complex
linear factors as above. But if f(α) = 0 , then f(α) = f(α) = 0 , so
the non-real roots come in complex conjugate pairs. Each such pair
α �= α with α = a + bi gives a real factor:

(z−α) (z−α) = z2 + (α+α) z + αα = z2 + 2az + (a2+b2) ∈ R[z] .

These factors are irreducible in R[z] since their roots α, α are not in
R by assumption.

• Example: Let f(z) = z4 + 1, having roots α1 = cis(π
4
) =

√
2

2
(1 + i) ,

α2 = cis(3π
4

) =
√

2
2

(−1 + i) , and their conjugates α1 , α2 . Factoring:

f(z) = (z−α1)(z−α1)(z−α2)(z−α2)

= (z2 + (α1+α1) z + α1α1) (z2 + (α2+α2) z + α2α2)

= (z2 +
√

2 z + 1) (z2 −√
2 z + 1)


