Math 418H Fall 2005
Lecture: Mon 11/7
1. Fundamental Theorem of Algebra
e Theorem: Any polynomial
f(z)=ao+arz+ -+ a,z" € C[z]

a) =0.

(
e First step: We give a proof by contradiction. Suppose f(z) were a
polynomial with no roots. Then its reciprocal g(z) := 1/f(z) would
be analytic everywhere. Furthermore:

of degree n > 1 has at least one complex root z = a with f

|llim lf(2)] = ‘l‘im la,2"| = o0,
meaning that f(z) has large radius if z is far from the origin. Thus
lim|;|—o g(2) = 0, meaning that g(z) has small radius when z is far
from the origin.

e Second step, Liouville’s Theorem: Let g(z) be a function which is
complex analytic on the whole plane, with lim|;| ., g(2) = 0. Then
g(z) can only be the zero constant function: g(z) = 0 for all z.
Proof: Consider any particular v € C, and take a very large circle
C(r,~) with radius r and center v. Given € > 0, by assumption we
can take radius large enough so that |g(z)| < € for z on the circle
C(r,7). By Cauchy’s Mean Value Theorem, the value g(vy) at the
center is the average of the value of g(z) on the circle C(r,v) = ¢(t):

g(v) = Avg g(c): ! gle(t)) | @) dt.

ceC(ryy) B %
Taking lengths and applying the triangle inequality,

|Aéng(C)| < A;fg |[F(c)],

we have:

lg(v)| = [Avg g(c) | < Avglg(c)| <.
C(ryy) C(ryy)

Since this is true for any € > 0, we must have |g(y)| = 0. This holds
for each v € C.

e Third step: Since g(z) = 1/f(z) is not the zero constant function,
we have a contradiction. Thus there cannot exist any non-vanishing
polynomial f(z) € Clz].



e Paraphrasing: Liouville’s Theorem says that if a non-constant an-
alytic function becomes very small as |z| — oo, then g(z) must
compensate for this by having non-anlytic points somewhere (for ex-
ample, blowing up to infinity). Hence, if an analytic f(z) becomes
very large as |z| — oo (as does a polynomial), then f(z) must com-
pensate for this by vanishing somewhere, i.e., having roots.

e This is a pure existence proof: it shows that a root-free polynomial
function f(z) would lead to an analytic function g(z) violating the
Cauchy Mean Value Theorem. The proof gives no clue how to find
a root for a given f(z): we will give an algorithm for this next time.

2. Factoring polynomials

e Proposition: Every monic complex polynomial f(z) of degree n can
be uniquely factored in C[z] as a product of n linear functions.

f(z) = (z=a1) - (z—an).
That is, the irreducible polynomials of C|z| are linear.

Proof: By the Fundamental Theorem, f(z) has a root z = «a and
thus a linear factor: f(z) = (z—ay) fi(z), where fi(z) has degree
n—1. Repeat this for fi(z) until all factors are linear.

e Proposition: Every monic real polynomial f(z) of degree n can be
uniquely factored in R|[z] as a product of linear and quadratic func-
tions:

f2) =(z—a1)--(z—ar) qu(2) -~ @u(2)
where o; € R, ¢;(2) € R[z] has degree 2, and k + 2¢ = n. That is,
the irreducible polynomials of R[z] are linear and quadratic.
Proof: A real polynomial f(z) € R[z] can be factored into complex
linear factors as above. But if f(a) = 0, then f(@) = f(a) =0, so
the non-real roots come in complex conjugate pairs. Each such pair
a # @ with a = a + bi gives a real factor:

(z—a) (z—a) = 2> + (a+@) z + aa = 2> + 2az + (a*+b*) € R[2].
These factors are irreducible in R[z] since their roots a, @ are not in
R by assumption.

o Ezample: Let f(z) = z* 4+ 1, having roots oy = cis(%) = g(l +1),
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f(z) = (z—a1)(z—a)(z—an)(2—0>)
= (2’2 + (041—1—51) z + 041@1) (22 + (Oég‘i‘ag) z+ Olgag)

= (24+V224+1) (22 =V22+1)

(—1+14), and their conjugates @; , @y . Factoring:



