Lecture: Mon 11/7

1. Fundamental Theorem of Algebra

- Theorem: Any polynomial

$$
f(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n} \in \mathbb{C}[z]
$$

of degree $n \geq 1$ has at least one complex root $z=\alpha$ with $f(\alpha)=0$.

- First step: We give a proof by contradiction. Suppose $f(z)$ were a polynomial with no roots. Then its reciprocal $g(z):=1 / f(z)$ would be analytic everywhere. Furthermore:

$$
\lim _{|z| \rightarrow \infty}|f(z)|=\lim _{|z| \rightarrow \infty}\left|a_{n} z^{n}\right|=\infty,
$$

meaning that $f(z)$ has large radius if z is far from the origin. Thus $\lim _{|z| \rightarrow \infty} g(z)=0$, meaning that $g(z)$ has small radius when z is far from the origin.

- Second step, Liouville's Theorem: Let $g(z)$ be a function which is complex analytic on the whole plane, with $\lim _{|z| \rightarrow \infty} g(z)=0$. Then $g(z)$ can only be the zero constant function: $g(z)=0$ for all z.
Proof: Consider any particular $\gamma \in \mathbb{C}$, and take a very large circle $\mathcal{C}(r, \gamma)$ with radius r and center γ. Given $\epsilon>0$, by assumption we can take radius large enough so that $|g(z)|<\epsilon$ for z on the circle $\mathcal{C}(r, \gamma)$. By Cauchy's Mean Value Theorem, the value $g(\gamma)$ at the center is the average of the value of $g(z)$ on the circle $\mathbb{C}(r, \gamma)=c(t)$:

$$
g(\gamma)=\underset{c \in \mathcal{C}(r, \gamma)}{\operatorname{Avg}} g(c):=\frac{1}{2 \pi r} \int g(c(t))\left|c^{\prime}(t)\right| d t .
$$

Taking lengths and applying the triangle inequality,

$$
|\underset{\mathcal{C}}{\operatorname{Avg}} F(c)| \leq \underset{\mathcal{C}}{\operatorname{Avg}}|F(c)|,
$$

we have:

$$
|g(\gamma)|=|\underset{\mathcal{C}(r, \gamma)}{\operatorname{Avg}} g(c)| \leq \underset{\mathcal{C}(r, \gamma)}{\operatorname{Avg}}|g(c)| \leq \epsilon
$$

Since this is true for any $\epsilon>0$, we must have $|g(\gamma)|=0$. This holds for each $\gamma \in \mathbb{C}$.

- Third step: Since $g(z)=1 / f(z)$ is not the zero constant function, we have a contradiction. Thus there cannot exist any non-vanishing polynomial $f(z) \in \mathbb{C}[z]$.
- Paraphrasing: Liouville's Theorem says that if a non-constant analytic function becomes very small as $|z| \rightarrow \infty$, then $g(z)$ must compensate for this by having non-anlytic points somewhere (for example, blowing up to infinity). Hence, if an analytic $f(z)$ becomes very large as $|z| \rightarrow \infty$ (as does a polynomial), then $f(z)$ must compensate for this by vanishing somewhere, i.e., having roots.
- This is a pure existence proof: it shows that a root-free polynomial function $f(z)$ would lead to an analytic function $g(z)$ violating the Cauchy Mean Value Theorem. The proof gives no clue how to find a root for a given $f(z)$: we will give an algorithm for this next time.

2. Factoring polynomials

- Proposition: Every monic complex polynomial $f(z)$ of degree n can be uniquely factored in $\mathbb{C}[z]$ as a product of n linear functions.

$$
f(z)=\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{n}\right) .
$$

That is, the irreducible polynomials of $\mathbb{C}[z]$ are linear.
Proof: By the Fundamental Theorem, $f(z)$ has a root $z=\alpha$ and thus a linear factor: $f(z)=\left(z-\alpha_{1}\right) f_{1}(z)$, where $f_{1}(z)$ has degree $n-1$. Repeat this for $f_{1}(z)$ until all factors are linear.

- Proposition: Every monic real polynomial $f(z)$ of degree n can be uniquely factored in $\mathbb{R}[z]$ as a product of linear and quadratic functions:

$$
f(z)=\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{k}\right) q_{1}(z) \cdots q_{\ell}(z),
$$

where $\alpha_{j} \in \mathbb{R}, q_{j}(z) \in \mathbb{R}[z]$ has degree 2 , and $k+2 \ell=n$. That is, the irreducible polynomials of $\mathbb{R}[z]$ are linear and quadratic.
Proof: A real polynomial $f(z) \in \mathbb{R}[z]$ can be factored into complex linear factors as above. But if $f(\alpha)=0$, then $f(\bar{\alpha})=\overline{f(\alpha)}=0$, so the non-real roots come in complex conjugate pairs. Each such pair $\alpha \neq \bar{\alpha}$ with $\alpha=a+b i$ gives a real factor:

$$
(z-\alpha)(z-\bar{\alpha})=z^{2}+(\alpha+\bar{\alpha}) z+\alpha \bar{\alpha}=z^{2}+2 a z+\left(a^{2}+b^{2}\right) \in \mathbb{R}[z] .
$$

These factors are irreducible in $\mathbb{R}[z]$ since their roots $\alpha, \bar{\alpha}$ are not in \mathbb{R} by assumption.

- Example: Let $f(z)=z^{4}+1$, having roots $\alpha_{1}=\operatorname{cis}\left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}(1+i)$, $\alpha_{2}=\operatorname{cis}\left(\frac{3 \pi}{4}\right)=\frac{\sqrt{2}}{2}(-1+i)$, and their conjugates $\bar{\alpha}_{1}, \bar{\alpha}_{2}$. Factoring:

$$
\begin{aligned}
f(z) & =\left(z-\alpha_{1}\right)\left(z-\bar{\alpha}_{1}\right)\left(z-\alpha_{2}\right)\left(z-\bar{\alpha}_{2}\right) \\
& =\left(z^{2}+\left(\alpha_{1}+\bar{\alpha}_{1}\right) z+\alpha_{1} \bar{\alpha}_{1}\right)\left(z^{2}+\left(\alpha_{2}+\bar{\alpha}_{2}\right) z+\alpha_{2} \bar{\alpha}_{2}\right) \\
& =\left(z^{2}+\sqrt{2} z+1\right)\left(z^{2}-\sqrt{2} z+1\right)
\end{aligned}
$$

