Lecture: Mon 8/29/05

1. $\mathbb{N}:=\{0,1,2, \ldots\}$ natural numbers (whole numbers)

- "God made the whole numbers; all the rest is the work of man."
- operations \Longrightarrow solving equations \Longrightarrow inverse operations \Longrightarrow new number systems
- accounting \Longrightarrow algebra:

8 sheep, 3 born, how many?
addition operation: $x=8+3=11$

- 11 sheep, 5 male, how many female?
$y+5=11, y=11-5=6$ (inverse to + op)
- 11 sheep, king wants 15 for taxes, how many left?
$z+15=11, z=11-15=-4$, debt of 4 sheep
new type of number, has meaning in original context
- $\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$ integers (from German Zahl)

2. \mathbb{Q} rational numbers

- 300 peasants, 15 sheep each in taxes, how much revenue?
multiplication operation: $u=300 \times 15=4500$
- 4500 revenue, 160 soldiers, how much for each? $4500 / 60=225 / 8=28+\frac{1}{8}$ fraction
- $\mathbb{Q}=\{a / b$ with $a, b, \in \mathbb{Z}, b \neq 0\}$ rational numbers (fractions)
- make definitions for \mathbb{Q} in terms of known terms for \mathbb{Z} equality of fractions: $a / b=c / d \Longleftrightarrow a d=b c$ addition of fractions: $a / b+c / d:=(a d+b c) / b d$

3. \mathbb{R} real numbers

- square field has area, $200 \mathrm{yd}^{2}$, side is how long?
$s^{2}=200, s=\sqrt{200}=10 \sqrt{2}$.
- Proposition: $\sqrt{2} \notin \mathbb{Q}$: that is, $(a / b)^{2} \neq 2$ for all $a / b \in \mathbb{Q}$
- Lemma: a^{2} even $\Longrightarrow a$ even

Proof of Lemma: if even $a=2 n$, then $a^{2}=4 n^{2}$ even; if odd $a=2 n+1$, then $a^{2}=4 n^{2}+4 n+1=2\left(2 n^{2}+2 n\right)+1$ odd.

- Proof of Proposition: Suppose $a / b \in \mathbb{Q}$ in lowest terms, so a, b are not both even. Suppose $(a / b)^{2}=2$, so that $a^{2}=2 b^{2}$ is even. By the Lemma, $a=2 n$ is even, so $2 b^{2}=(2 n)^{2}=4 n^{2}$ and $b^{2}=2 n^{2}$ is even. By the Lemma, b is also even, so we could not have any solution a / b in lowest terms.
- solve $x^{2}=c \quad \Longrightarrow \quad$ solve $a x^{2}+b x+c=0$

Complete-the-square trick: Rewrite eqn as $x^{2}+(b / a) x+(c / a)=0$. If $2 d=b / a$ then:

$$
(x+d)^{2}-d^{2}+\frac{c}{a}=x^{2}+\frac{b}{a} x+\frac{c}{a}=0
$$

Now we can solve $(x+d)^{2}=d^{2}-c / a$, so $x=-d \pm \sqrt{d^{2}-c / a}$ for $d=b / 2 a$. Work out the usual quadratic formula.
4. $\mathbb{C}=\{a+i b$ for $a, b \in \mathbb{R}\}$, complex numbers

- solve $x^{2}+1=0$ gives new number $i=\sqrt{-1}$
- can define operations on numbers $a+b i$ for $a, b \in \mathbb{R}$ in terms of known operations on \mathbb{R}. $(a+b i)(c+d i)=a c+i^{2} b d+i a d+i b c=(a c-b d)+i(a d+b c)$
- can now solve $x^{2}=-a: \quad x=\sqrt{-a}=i \sqrt{a}$ for $a \geq 0$.
- can now solve $a x^{2}+b x+c=0$ for any $a, b, c \in \mathbb{R}$ (even if no real solution): quadratic formula
- Fundamental Theorem of Algebra: Any polynomial equation

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0
$$

with coefficients $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{C}$ has at least one solution $x=$ $a+b i \in \mathbb{C}$.

- Thus, the process of finding more general number systems to solve equations ends with \mathbb{C}.

