
Lecture: Mon 8/31/05

1. Pythagorean triples

• Number theory: properties of integers Z

finding integer solutions to equations

• Example: Pythagorean triples
all 3 sides of a right triangle are whole numbers
solve a2 + b2 = c2 for integers a, b, c > 0.

• Let x = a/c , y = b/c , then solve:
x2 + y2 = 1 for rational numbers x, y ∈ Q.
find rational points (x, y) on unit circle

• Projection of circle from (−1, 0) to line x = 1:
miraculously, rational points (1, t) on line
correspond one-to-one with rational points (x, y) on circle

• E.g. t = 3
2
, line between (1, t) and (−1, 0) is y = 3

4
(x+1)

intersect with x2 + y2 = 1 =⇒ 1 − x2 = 9
16

(x + 1)2

=⇒ 1 − x = 9
16

(x + 1) =⇒ (x, y) = ( 7
25

, 24
25

)

=⇒ (a, b, c) = (7, 24, 25).

2. Prime factorization of integers

• divisibility: a|b ⇐⇒ b = ac for some c ∈ Z

a is a factor of b , a divides b , b is divisible by a

• prime p means only possible factors d|p are d = 1, p
convention: 1 is not a prime

• Fundamental Theorem of Arithmetic (Unique Factorization):
Any positive integer n can be factored into primes: n = p1p2 · · · pr.
This can be done in only one way (except for the order of the
factors).

3. Greatest common divisor

• gcd(a, b) = max{ d such that d|a and d|b }
• Euclidean algorithm to find gcd(a, b)

Example: (a, b) = (36, 15)
repeat division with remainder until remainder is 0:

(36, 15) 36 = 2(15) + 6 3|36
(15, 6) 15 = 2(6) + 3 3|15
(6, 3) 6 = 2(3) + 0 3|6

1



• Claim: (i) 3|36 and 3|15 (ii) d|36 and d|15 =⇒ d|3
Proof of (i): clear from above.
Proof of (ii): 3 = 2(6) − 15 , 6 = 2(15) − 36
so back-substitute: 3 = 2(2(15)− 36) − 15 = −36 + 3(15)
Since 3 = �(36) + m(15) , if d|36 and d|15, then d|3.

4. General Euclidean Algorithm to find gcd(a, b)

• x0 := a , x1 = b , repeat division with remainder:
x0 = q1x1 + x2 , x1 = q2x2 + x3 , · · · , xn−1 = qnxn + 0

• Proposition: xn = gcd(a, b).

• Claim: (i) xn|a and xn|b (ii) xn = �a + mb for �, m ∈ Z

• Prove Claims just as in above example, and prove Proposition
using Claims.

5. Lemma: For p a prime: p|ab =⇒ p|a or p|b.
• Proof: Let d = gcd(p, a). Since d|p, we have d = p or d = 1.

If d = p, then p|a, OK. If d = 1, then 1 = d = �p + ma, so
b = �pa + mab. Since p|�pa and p|abm, we have p|b, OK.

6. Proof of Fundamental Theorem of Arithmetic

• Obviously there is some factorization of n into primes: keep fac-
toring until factors are prime. But why unique (except for re-
arrangement)?

• Suppose p1 · · · pr = q1 · · · qs. Then p1|q1(q2 · · · qs) . Use Lemma:
if p1|q1, then p1 = q1. If p1|q2 · · · qs , repeat to get p1 = q2 or
p1|q3 · · · qs. In the end, we find p1 = qi for some i.

• Removing p1 = qi from both sides of the product, get: p2 · · · pr =
q1 · · · qi−1qi+1 · · · qs.
Now repeat to find p2 = qj , and remove this factor from both
sides, etc.

• This process ends when there are no more primes on right or left
side, leaving 1. But this means the product of remaining primes
on the other side is 1, so the other side must have no primes left
either. Thus r = s.

• In the end, we find the list p1, . . . , pr is a rearrangement of the
list q1, . . . , qs, so factorization is unique.
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