Lecture: Wed 9/14/05

1. $\mathbb{Q}[x]$ polynomial ring

- $\mathbb{Q}[x]$ is the set of all polynomial functions

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

where the coefficients $a_{i} \in \mathbb{Q}$ for all i.

- Degree: If $a_{n} \neq 0$, we say $n=\operatorname{deg} f(x)$, the degree of the polynomial. A constant function $f(x)=c \neq 0$ has degree 0 , and the zero function $f(x)=0$ has no degree (or degree $-\infty$).
- Monic polynomial: $a_{n}=1$.
- Addition:

$$
\sum_{i=0}^{n} a_{i} x^{i}+\sum_{i=0}^{m} b_{i} x^{i}:=\sum_{i=0}^{\max (m, n)}\left(a_{i}+b_{i}\right) x^{i}
$$

Thus, $\operatorname{deg}(f(x)+g(x))=\max (\operatorname{deg} f(x), \operatorname{deg} g(x))$.

- Multiplication:

$$
\left(\sum_{i=0}^{n} a_{i} x^{i}\right) \bullet\left(\sum_{i=0}^{m} b_{i} x^{i}\right):=\sum_{k=0}^{m+n}\left(\sum_{i=0}^{k} a_{i} b_{k-i}\right) x^{k}
$$

Thus $\operatorname{deg}(f(x) \bullet g(x))=\operatorname{deg} f(x)+\operatorname{deg} g(x)$.

- We can think of $f(x) \in \mathbb{Q}[x]$ as a function $f: \mathbb{Q} \rightarrow \mathbb{Q}$ with the usual addition and multiplication of functions. From this, it is clear that $\mathbb{Q}[x]$ is a commutative ring and a domain, because \mathbb{Q} is so.
- Arithmetic in $\mathbb{Q}[x]$ is analogous to \mathbb{Z}, with x taking the role of base 10 :

$$
\begin{aligned}
\left(3 x^{2}+5 x\right)+(2 x+3) & =3 x^{2}+7 x+3 \\
350+23=\left(3 \cdot 10^{2}+5 \cdot 10\right)+(2 \cdot 10+3) & =3 \cdot 10^{2}+7 \cdot 10+3=373
\end{aligned}
$$

- The key algorithm for $\mathbb{Q}[x]$, as for \mathbb{Z}, is long division. For any $f(x), g(x) \in \mathbb{Q}[x]$, there exist $q(x), r(x) \in \mathbb{Q}[x]$ with:

$$
f(x)=q(x) g(x)+r(x) \quad \text { and } \quad \operatorname{deg} r(x)<\operatorname{deg} g(x) \quad \text { or } \quad r(x)=0 .
$$

- Units: $\mathbb{Q}[x]^{\times}=\{f(x)=c \neq 0\}$, the non-zero constant functions (the polynomials of degree 0).

2. Factorization in $\mathbb{Q}[x]$

- Divisibility: $g(x)$ divides $f(x)$, written $g(x) \mid f(x)$, means $f(x)=$ $g(x) h(x)$ for some $h(x) \in \mathbb{Q}[x]$. Note that the units $c \neq 0$ divide every polynomial $f(x)$, since $f(x)=c \bullet \frac{1}{c} f(x)$.
- Irreducible polynomials: The analog of primes are the polynomials $p(x)$ whose only divisors are 1 and $p(x)$ (times units).
- Polynomial greatest common divisor: $d(x)=\operatorname{gcd}(f(x), g(x))$ is the highest degree polynomial with $d(x) \mid f(x)$ and $d(x) \mid g(x)$. Note that $d(x)$ is not unique, but can be multiplied by any unit. We usually normalize $d(x)$ to be monic.
- Euclidean Algorithm: Works exactly as for \mathbb{Z}. Shows that

$$
\operatorname{gcd}(f(x), g(x))=n(x) f(x)+m(x) g(x)
$$

for some $n(x), m(x) \in \mathbb{Q}[x]$.

- Key Property of Primes: If an irreducible $p(x) \mid a(x) b(x)$, then $p(x) \mid a(x)$ or $p(x) \mid b(x)$.
Proof. If $\operatorname{gcd}(a(x), p(x))=p(x)$, then $p(x) \mid a(x)$. Otherwise, $\operatorname{gcd}(a(x), p(x))=1$, so by the Euclidean Algorithm $1=m(x) a(x)+$ $n(x) p(x)$ and:

$$
b(x)=m(x) a(x) b(x)+n(x) p(x) b(x) .
$$

Since $p(x)$ divides both terms on the righthand side, it also divides the lefthand side: $p(x) \mid b(x)$.

- Unique Factorization: In $\mathbb{Q}[x]$, any polynomial factors into a product of irreducibles in a unique way, except for rearranging the factors, and multiplying by units. If we specify that all polynomials are monic, we can forget about multiplying by units.
Proof. Same as for \mathbb{Z}.

3. $R[x]$, general polynomial ring.

- We can define polynomials $R[x]$ with coefficients in any commutative ring R.
- All results above hold whenever $R=F$, any field. For example $R=\mathbb{R}$ the reals, or \mathbb{C} the complex numbers, or \mathbb{Z}_{2} the clock arithmetic modulo 2 .
- If R is not a field, the division algorithm for $R[x]$ does not work, and $R[x]$ is not Euclidean.
Example: $\mathbb{Z}[x]$ has no possible division algorithm.

