Lecture: Mon 9/19/05

1. Factoring polys and finding roots

- Root of a polynomial $f(x)$ means a value c with $f(c)=0$.
- Prop: For $f(x) \in \mathbb{Q}[x]$, have: $f(c)=0$ for $c \in \mathbb{Q} \Longrightarrow(x-c) \mid f(x)$.

Proof of \Rightarrow : Divide: $f(x)=q(x)(x-c)+r(x)$ with $\operatorname{deg} r(x)<\operatorname{deg}(x-c)=1$. Thus $r(x)=a$, a constant (possibly zero). Now: $0=f(c)=q(c)(c-c)+a=a$, i.e. $f(x)=$ $q(x)(x-c)$.

- Prop: The number of distinct roots of a polynomial is always less than its degree.

Proof: Let $f(x)=a_{0}+\cdots+a_{n} x^{n}$ with $\operatorname{deg} f(x)=n$. Let c_{1}, \ldots, c_{k} be its distinct roots. Then $f(x)=\left(x-c_{1}\right) f_{1}(x)$ by the previous proposition. Further $0=f\left(c_{2}\right)=$ $\left(c_{2}-c_{1}\right) f_{1}\left(c_{2}\right)$, and $c_{2}-c_{1} \neq 0$, so $f_{1}\left(c_{2}\right)=0$, and similarly c_{2}, \ldots, c_{k} are roots of $f_{1}(x)$. Repeating, get:

$$
f(x)=\left(x-c_{1}\right) \cdots\left(x-c_{k}\right) f_{k}(x)
$$

for some poly $f_{k}(x)$ of degree $d \geq 0$. Taking degrees of both sides, $n=k+d$, so $k \leq n$.
2. Rational Root Test

- Theorem: If $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{Z}[x]$ (i.e., $a_{i} \in \mathbb{Z}$), and $f(c / d)=0$ for $c / d \in \mathbb{Q}$ in lowest terms, then $c \mid a_{0}$ and $d \mid a_{n}$ in \mathbb{Z}.
- Example: Find all complex roots of

$$
g(x)=x^{3}-\frac{13}{3} x^{2}-\frac{1}{3} x+2=0
$$

Clear denominators to get $f(x)=3 x^{3}-13 x^{2}-x+6=0$. Any rational root c / d must satisfy $c \mid 6$ and $d \mid 3$, so candidates are:

$$
\frac{c}{d}= \pm 6, \pm 2, \pm 1, \pm \frac{2}{3}, \pm \frac{1}{3}
$$

Plugging in $f(c / d)$, find the only rat root is $f(-2 / 3)=0$. Factoring, get $h(x)=$ $g(x) /(x+2 / 3)=x^{2}-5 x+3$. Now apply quadratic formula to find the remaining 2 roots of $h(x)$.
3. Factorization in $R[x]$

- For any commutative ring R, we can define $R[x]$, the ring of polynomials with coefficients in R. The unit polynomials are just the unit constant functions: $R[x]^{\times}=R^{\times}$.
- Irreducible polynomial $p(x) \in R[x]$ means: the only divisors of $p(x)$ in $R[x]$ are $p(x)$ and 1 (times a unit $c \in R^{\times}$).
- For general R, if $p(x)$ is irreducible, then it is impossible to factor $p(x)=f(x) g(x)$ with $g(x), g(x) \in R[x]$ and $\operatorname{deg} g(x), \operatorname{deg} g(x)<\operatorname{deg} p(x)$.
But if R is not a field, we can have irreducible constants $c \notin R^{\times}$, so $p(x)$ could be reducible even if there is no factorization $p(x)=f(x) g(x)$ as above.
- Example: Consider $p(x)=2 x^{2}-4$.
- In $\mathbb{R}[x]$ with real number coefficients, we can factor:

$$
p(x)=x^{2}-2=2(x-\sqrt{2})(x+\sqrt{2}) \in \mathbb{R}[x]
$$

So $p(x)$ is reducible in $\mathbb{R}[x]$.

- In $\mathbb{Q}[x]$ with rational coefficients, any non-trivial factors $p(x)=f(x) g(x)$ would have to be linear: $f(x)=x-a$ for some $a \in \mathbb{Q}$ with $f(a)=0$, but the roots $a= \pm \sqrt{2}$ are irrational. So $p(x)$ is irreducible in $\mathbb{Q}[x]$.
- In $\mathbb{Z}[x]$, where the coefficients are not a field, we can factor $p(x)=2\left(x^{2}-2\right)$, where 2 and $\left(x^{2}-2\right)$ are both irreducible in $\mathbb{Z}[x]$. So $p(x)$ is reducible in $\mathbb{Z}[x]$.

4. Factorization in $\mathbb{Z}[x]$ vs $\mathbb{Q}[x]$

- Units: $\mathbb{Z}[x]^{\times}=\{ \pm 1\}$, but general $f(x)=c$ is not invertible in $\mathbb{Z}[x]$. $\mathbb{Q}[x]^{\times}=\mathbb{Q}^{\times}$, the non-zero constant polynomials
- Two types of primes in $\mathbb{Z}[x]$. First, any prime integer $p \in \mathbb{Z}$ is also a prime in $\mathbb{Z}[x]$. Second, for any irreducible $f(x) \in \mathbb{Q}[x]$, we can clear denominators and get an irreducible in $\mathbb{Z}[x]$. Example: $x^{2}-x-\frac{1}{2}$ in $\mathbb{Q}[x]$ corresponds to the irreducible $2 x^{2}-2 x-1$ in $\mathbb{Z}[x]$. However, $4 x^{2}-4 x-2=2\left(2 x^{2}-2 x-1\right)$ is reducible in $\mathbb{Z}[x]$, but irreducible in $\mathbb{Q}[x]$, since the constant 2 is a unit in $\mathbb{Q}[x]$.
- Gauss Lemma: If an integer polynomial $f(x)$ is irreducible in $\mathbb{Z}[x]$, then $f(x)$ is also irreducible in the larger ring $\mathbb{Q}[x]$.
Equivalently, if an integer polynomial $f(x)$ is reducible in $\mathbb{Q}[x]$, then $f(x)$ is also reducible in the smaller ring $\mathbb{Z}[x]$.

5. Proof of the Rational Root Test

- Idea of Proof: If $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ with $f(c / d)=0$, then $f(x)=(x-$ $c / d) g(x)$ for some $g(x) \in \mathbb{Q}[x]$ with $\operatorname{deg} g(x)=n-1$. We can factor in $\mathbb{Z}[x]$ by clearing denominators:

$$
\begin{aligned}
f(x) & =(d x-c)\left(b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0}\right) \\
& =d b_{n-1} x^{n}+\cdots+\left(d b_{0}-c b_{1}\right) x-c b_{0}
\end{aligned}
$$

with $b_{i} \in \mathbb{Z}$. Thus $a_{0}=-c b_{0}$ and $a_{n}=d b_{n-1}$, so $c \mid a_{0}$ and $d \mid a_{n}$.

- Why this proof is incomplete: The dubious phrase is "clearing denominators." If we multiply $(x-c / d)$ by d, we have to divide $g(x)$ by d, and it is not at all clear that the resulting factor $b_{n-1} z^{n-1}+\cdots+b_{0}$ will be in $\mathbb{Z}[x]$. Also, notice that we never used the hypothesis $\operatorname{gcd}(c, d)=1$, so we have actually "proved" RRT without assuming c / d is in lowest terms, which is FALSE!
- Proof (assuming Gauss Lemma): Induction on $n=\operatorname{deg} f(x)$.

If $n=1$, then \ldots (Exercise)
If $n>1$, we may assume RRT is true for polynomials of degree $k<n$. Since $f(c / d)=0$, we known $f(x)=(x-c / d) g(x)$ for $g(x) \in \mathbb{Q}[x]$, so $f(x)$ is reducible in $\mathbb{Q}[x]$. Thus by the Gauss Lemma $f(x)$ is reducible in $\mathbb{Z}[x]$, meaning $f(x)=f_{1}(x) f_{2}(x)$ for $f_{1}(x), f_{2}(x) \in$ $\mathbb{Z}[x]$ with $\operatorname{deg} f_{1}(x), \operatorname{deg} f_{2}(x)<n$.

Now $0=f(c / d)=f_{1}(c / d) f_{2}(c / d)$, so c / d is a root of $f_{1}(x)$ or $f_{2}(x)$ (say $f_{1}(x)$). By induction, RRT applies to $f_{1}(x)$ having degree $k<n$, so $f_{1}(x)=b_{k} x^{k}+\cdots+b_{0}$ for $b_{i} \in \mathbb{Z}$ with $c \mid b_{0}$ and $d \mid b_{k}$. Writing out the coefficients of $f(x)=f_{1}(x) f_{2}(x)$ gives the divisibility $c \mid a_{0}$ and $d \mid a_{n}$, so RRT holds for $f(x)$ of degree n.

