Lecture: Mon 9/19/05

- 1. Factoring polys and finding roots
 - Root of a polynomial f(x) means a value c with f(c) = 0.
 - Prop: For $f(x) \in \mathbb{Q}[x]$, have: f(c) = 0 for $c \in \mathbb{Q} \implies (x-c) | f(x)$. Proof of \Rightarrow : Divide: f(x) = q(x) (x-c) + r(x) with $\deg r(x) < \deg(x-c) = 1$. Thus r(x) = a, a constant (possibly zero). Now: 0 = f(c) = q(c) (c-c) + a = a, i.e. f(x) = q(x) (x-c).
 - Prop: The number of distinct roots of a polynomial is always less than its degree.

Proof: Let $f(x) = a_0 + \cdots + a_n x^n$ with deg f(x) = n. Let c_1, \ldots, c_k be its distinct roots. Then $f(x) = (x-c_1) f_1(x)$ by the previous proposition. Further $0 = f(c_2) = (c_2 - c_1) f_1(c_2)$, and $c_2 - c_1 \neq 0$, so $f_1(c_2) = 0$, and similarly c_2, \ldots, c_k are roots of $f_1(x)$. Repeating, get:

$$f(x) = (x - c_1) \cdots (x - c_k) f_k(x)$$

for some poly $f_k(x)$ of degree $d \ge 0$. Taking degrees of both sides, n = k + d, so $k \le n$.

- 2. Rational Root Test
 - Theorem: If $f(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{Z}[x]$ (i.e., $a_i \in \mathbb{Z}$), and f(c/d) = 0 for $c/d \in \mathbb{Q}$ in lowest terms, then $c \mid a_0$ and $d \mid a_n$ in \mathbb{Z} .
 - Example: Find all complex roots of

$$g(x) = x^3 - \frac{13}{3}x^2 - \frac{1}{3}x + 2 = 0.$$

Clear denominators to get $f(x) = 3x^3 - 13x^2 - x + 6 = 0$. Any rational root c/d must satisfy $c \mid 6$ and $d \mid 3$, so candidates are:

$$\frac{c}{d} = \pm 6, \pm 2, \pm 1, \pm \frac{2}{3}, \pm \frac{1}{3}.$$

Plugging in f(c/d), find the only rat root is f(-2/3) = 0. Factoring, get $h(x) = g(x)/(x+2/3) = x^2 - 5x + 3$. Now apply quadratic formula to find the remaining 2 roots of h(x).

- 3. Factorization in R[x]
 - For any commutative ring R, we can define R[x], the ring of polynomials with coefficients in R. The unit polynomials are just the unit constant functions: $R[x]^{\times} = R^{\times}$.
 - Irreducible polynomial $p(x) \in R[x]$ means: the only divisors of p(x) in R[x] are p(x) and 1 (times a unit $c \in R^{\times}$).
 - For general R, if p(x) is irreducible, then it is impossible to factor p(x) = f(x)g(x) with g(x), g(x) ∈ R[x] and deg g(x), deg g(x) < deg p(x).
 But if R is not a field, we can have irreducible constants c ∉ R[×], so p(x) could be reducible even if there is no factorization p(x) = f(x)g(x) as above.
 - Example: Consider $p(x) = 2x^2 4$.

- In $\mathbb{R}[x]$ with real number coefficients, we can factor:

$$p(x) = x^2 - 2 = 2(x - \sqrt{2})(x + \sqrt{2}) \in \mathbb{R}[x]$$

So p(x) is reducible in $\mathbb{R}[x]$.

- In $\mathbb{Q}[x]$ with rational coefficients, any non-trivial factors p(x) = f(x)g(x) would have to be linear: f(x) = x - a for some $a \in \mathbb{Q}$ with f(a) = 0, but the roots $a = \pm \sqrt{2}$ are irrational. So p(x) is irreducible in $\mathbb{Q}[x]$.
- In $\mathbb{Z}[x]$, where the coefficients are not a field, we can factor $p(x) = 2(x^2-2)$, where 2 and (x^2-2) are both irreducible in $\mathbb{Z}[x]$. So p(x) is reducible in $\mathbb{Z}[x]$.
- 4. Factorization in $\mathbb{Z}[x]$ vs $\mathbb{Q}[x]$
 - Units: $\mathbb{Z}[x]^{\times} = \{\pm 1\}$, but general f(x) = c is *not* invertible in $\mathbb{Z}[x]$. $\mathbb{Q}[x]^{\times} = \mathbb{Q}^{\times}$, the non-zero constant polynomials
 - Two types of primes in $\mathbb{Z}[x]$. First, any prime integer $p \in \mathbb{Z}$ is also a prime in $\mathbb{Z}[x]$. Second, for any irreducible $f(x) \in \mathbb{Q}[x]$, we can clear denominators and get an irreducible in $\mathbb{Z}[x]$. Example: $x^2 - x - \frac{1}{2}$ in $\mathbb{Q}[x]$ corresponds to the irreducible $2x^2 - 2x - 1$ in $\mathbb{Z}[x]$. However, $4x^2 - 4x - 2 = 2(2x^2 - 2x - 1)$ is reducible in $\mathbb{Z}[x]$, but irreducible in $\mathbb{Q}[x]$, since the constant 2 is a unit in $\mathbb{Q}[x]$.
 - Gauss Lemma: If an integer polynomial f(x) is irreducible in $\mathbb{Z}[x]$, then f(x) is also irreducible in the larger ring $\mathbb{Q}[x]$.

Equivalently, if an integer polynomial f(x) is reducible in $\mathbb{Q}[x]$, then f(x) is also reducible in the smaller ring $\mathbb{Z}[x]$.

- 5. Proof of the Rational Root Test
 - Idea of Proof: If $f(x) = a_n x^n + \cdots + a_1 x + a_0$ with f(c/d) = 0, then f(x) = (x c/d) g(x) for some $g(x) \in \mathbb{Q}[x]$ with deg g(x) = n-1. We can factor in $\mathbb{Z}[x]$ by clearing denominators:

$$f(x) = (dx - c) (b_{n-1}x^{n-1} + \dots + b_1x + b_0)$$

= $db_{n-1}x^n + \dots + (db_0 - cb_1)x - cb_0$

with $b_i \in \mathbb{Z}$. Thus $a_0 = -cb_0$ and $a_n = db_{n-1}$, so $c \mid a_0$ and $d \mid a_n$.

- Why this proof is incomplete: The dubious phrase is "clearing denominators." If we multiply (x c/d) by d, we have to divide g(x) by d, and it is not at all clear that the resulting factor $b_{n-1}z^{n-1} + \cdots + b_0$ will be in $\mathbb{Z}[x]$. Also, notice that we never used the hypothesis gcd(c, d) = 1, so we have actually "proved" RRT without assuming c/d is in lowest terms, which is FALSE!
- Proof (assuming Gauss Lemma): Induction on $n = \deg f(x)$.
 - If n = 1, then ... (Exercise)

If n > 1, we may assume RRT is true for polynomials of degree k < n. Since f(c/d) = 0, we known f(x) = (x - c/d) g(x) for $g(x) \in \mathbb{Q}[x]$, so f(x) is reducible in $\mathbb{Q}[x]$. Thus by the Gauss Lemma f(x) is reducible in $\mathbb{Z}[x]$, meaning $f(x) = f_1(x) f_2(x)$ for $f_1(x), f_2(x) \in \mathbb{Z}[x]$ with deg $f_1(x)$, deg $f_2(x) < n$.

Now $0 = f(c/d) = f_1(c/d) f_2(c/d)$, so c/d is a root of $f_1(x)$ or $f_2(x)$ (say $f_1(x)$). By induction, RRT applies to $f_1(x)$ having degree k < n, so $f_1(x) = b_k x^k + \cdots + b_0$ for $b_i \in \mathbb{Z}$ with $c \mid b_0$ and $d \mid b_k$. Writing out the coefficients of $f(x) = f_1(x) f_2(x)$ gives the divisibility $c \mid a_0$ and $d \mid a_n$, so RRT holds for f(x) of degree n.