Lecture: Wed 9/21/05

- 1. Gauss Lemma for primitive polynomials in $\mathbb{Z}[x]$
 - Divisibility: g(x) | f(x) in $\mathbb{Z}[x]$ means f(x) = g(x) h(x) for some $h(x) \in \mathbb{Z}[x]$. We say p(x) is *irreducible* in $\mathbb{Z}[x]$ if its only divisors are 1 and p(x) (times ± 1).
 - A constant $n \in \mathbb{Z}$ divides $f(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{Z}[x]$ whenever $n \mid a_0, \dots, a_n$. A constant $p \in \mathbb{Z}$ is irreducible in $\mathbb{Z}[x]$ whenever it is prime in \mathbb{Z} .
 - These just restate the above in the case of constant polynomials.
 - Primitive polynomial: $f(x) \in \mathbb{Z}[x]$ with $gcd(a_0, a_1, \ldots, a_n) = 1$. That is, no integer *n* divides f(x) (except units ± 1).
 - Lemma: If $f(x), g(x) \in \mathbb{Z}[x]$ are primitive, then the product f(x) g(x) is also primitive.
 - Equivalently: If f(x) g(x) is not primitive, then f(x) or g(x) is not primitive. That is, if a prime $p \in \mathbb{Z}$ divides f(x) g(x) in $\mathbb{Z}[x]$, then p divides f(x) or g(x).
 - *Proof:* Let $f(x) = \sum_{i=0}^{n} a_i x^i$ and $g(x) = \sum_{j=0}^{m} b_j x^j$, and suppose p divides the product:

$$f(x) g(x) = \sum_{k=0}^{n+m} c_k x^k = \sum_{k=0}^{n+m} \left(\sum_{i=0}^k a_i b_{k-i} \right) x^k .$$

Assume we have: $p | a_0, a_1, \ldots, a_k$ and $p | b_0, b_1, \ldots, b_\ell$ for some k < n and $\ell < m$. Either or both lists are allowed to be empty, containing no elements, in which case we have assumed *nothing*. Now we have:

$$c_{k+\ell+2} = \frac{a_0 b_{k+\ell+2} + a_1 b_{k+\ell+1} + \dots + a_k b_{\ell+2}}{a_{k+\ell+2} b_0 + a_{k+\ell+1} b_1 + \dots + a_{k+2} b_\ell} + a_{k+1} b_{\ell+1}$$

By assumption, p divides the lefthand side $c_{k+\ell+2}$, and p divides all the terms on the righthand side except possibly $a_{k+1}b_{\ell+1}$. But then p must divide the last term, and $p | a_{k+1}$ or $p | b_{\ell+1}$.

Hence we can add one item $(a_{k+1} \text{ or } b_{\ell+1})$ to our list of coefficients divisible by p. We can keep repeating this argument and enlarging our list: the process will only end when k = n or $\ell = m$, which means $p \mid f(x)$ or $p \mid g(x)$.

- 2. Factorization in $\mathbb{Z}[x]$ versus $\mathbb{Q}[x]$
 - Gauss Lemma: If a non-constant $f(x) \in \mathbb{Z}[x]$ is irreducible in $\mathbb{Z}[x]$, then f(x) is irreducible in $\mathbb{Q}[x]$.
 - Equivalently: If $f(x) \in \mathbb{Z}[x]$ has non-trivial factors in $\mathbb{Q}[x]$, then it has non-trivial factors in $\mathbb{Z}[x]$.
 - Proof: Suppose f(x) = g(x)h(x) with $f(x) \in \mathbb{Z}[x]$ and $g(x), h(x) \in \mathbb{Q}[x]$. We must find factors of f(x) in $\mathbb{Z}[x]$. Let $f(x) = af_0(x)$, $g(x) = bg_0(x)$, $h(x) = ch_0(x)$, where $f_0, g_0, h_0 \in \mathbb{Z}[x]$ are primitive polynomials, and $a \in \mathbb{Z}$, $b, c \in \mathbb{Q}$.

Then $\frac{a}{bc}f_0(x) = g_0(x)h_0(x)$, which is a primitive polynomial by Gauss' Lemma above. Thus both $f_0(x)$ and $\frac{a}{bc}f_0(x)$ are primitive integer polynomials, so we must have a/bc = 1 and a = bc. Thus $f(x) = bcg_0(x)h_0(x) = ag_0(x)h_0(x)$, with all factors in $\mathbb{Z}[x]$.

- 3. Unique factorization for $\mathbb{Z}[x]$
 - $\mathbb{Z}[x]$ has no possible division algorithm because gcd(2, x) = 1, but $2n(x) + xm(x) \neq 1$ for any $n(x), m(x) \in \mathbb{Z}[x]$.
 - Proposition: Any integer polynomial factors into a product of irreducibles in $\mathbb{Z}[x]$, namely into prime constants and irreducible primitive polynomials, and this factorization is unique except for re-ordering and \pm signs.
 - Proof: Suppose

$$p_1 \cdots p_r f_1(x) \cdots f_u(x) = q_1 \cdots q_s g_1(x) \cdots g_v(x),$$

where $p_i, q_i \in \mathbb{Z}$ are prime constants and $f_i(x), g_i(x) \in \mathbb{Z}[x]$ are primitive irreducibles. Thus $f_i(x), g_i(x)$ are also irreducibles in $\mathbb{Q}[x]$ by the above Gauss Lemma on Factorization. By the Unique Factorization for $\mathbb{Q}[x]$ we may assume $f_i(x) = c_i g_i(x)$ for constants $c_i \in \mathbb{Q}^{\times}$. But since both $f_i(x)$ and $g_i(x)$ are primitive integer polynomials, we must have $c_i = \pm 1$. Factoring $f_i(x) = g_i(x)$ from both sides, we have $p_1 \cdots p_r = q_1 \cdots q_s$. By Unique Factorization for \mathbb{Z} , we may assume $p_i = \pm q_i$, so we are done.