Lecture: Wed 9/21/05

1. Gauss Lemma for primitive polynomials in $\mathbb{Z}[x]$

- Divisibility: $g(x) \mid f(x)$ in $\mathbb{Z}[x]$ means $f(x)=g(x) h(x)$ for some $h(x) \in \mathbb{Z}[x]$. We say $p(x)$ is irreducible in $\mathbb{Z}[x]$ if its only divisors are 1 and $p(x)$ (times ± 1).
- A constant $n \in \mathbb{Z}$ divides $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{Z}[x]$ whenever $n \mid a_{0}, \ldots, a_{n}$. A constant $p \in \mathbb{Z}$ is irreducible in $\mathbb{Z}[x]$ whenever it is prime in \mathbb{Z}.
These just restate the above in the case of constant polynomials.
- Primitive polynomial: $f(x) \in \mathbb{Z}[x]$ with $\operatorname{gcd}\left(a_{0}, a_{1}, \ldots, a_{n}\right)=1$. That is, no integer n divides $f(x)$ (except units ± 1).
- Lemma: If $f(x), g(x) \in \mathbb{Z}[x]$ are primitive, then the product $f(x) g(x)$ is also primitive.
- Equivalently: If $f(x) g(x)$ is not primitive, then $f(x)$ or $g(x)$ is not primitive. That is, if a prime $p \in \mathbb{Z}$ divides $f(x) g(x)$ in $\mathbb{Z}[x]$, then p divides $f(x)$ or $g(x)$.
- Proof: Let $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$ and $g(x)=\sum_{j=0}^{m} b_{j} x^{j}$, and suppose p divides the product:

$$
f(x) g(x)=\sum_{k=0}^{n+m} c_{k} x^{k}=\sum_{k=0}^{n+m}\left(\sum_{i=0}^{k} a_{i} b_{k-i}\right) x^{k} .
$$

Assume we have: $p \mid a_{0}, a_{1}, \ldots, a_{k}$ and $p \mid b_{0}, b_{1}, \ldots, b_{\ell}$ for some $k<n$ and $\ell<m$. Either or both lists are allowed to be empty, containing no elements, in which case we have assumed nothing. Now we have:

$$
c_{k+\ell+2}=\begin{aligned}
& a_{0} b_{k+\ell+2}+a_{1} b_{k+\ell+1}+\cdots+a_{k} b_{\ell+2} \\
& a_{k+\ell+2} b_{0}+a_{k+\ell+1} b_{1}+\cdots+a_{k+2} b_{\ell}
\end{aligned}+a_{k+1} b_{\ell+1} .
$$

By assumption, p divides the lefthand side $c_{k+\ell+2}$, and p divides all the terms on the righthand side except possibly $a_{k+1} b_{\ell+1}$. But then p must divide the last term, and $p \mid a_{k+1}$ or $p \mid b_{\ell+1}$.

Hence we can add one item $\left(a_{k+1}\right.$ or $\left.b_{\ell+1}\right)$ to our list of coefficients divisible by p. We can keep repeating this argument and enlarging our list: the process will only end when $k=n$ or $\ell=m$, which means $p \mid f(x)$ or $p \mid g(x)$.
2. Factorization in $\mathbb{Z}[x]$ versus $\mathbb{Q}[x]$

- Gauss Lemma: If a non-constant $f(x) \in \mathbb{Z}[x]$ is irreducible in $\mathbb{Z}[x]$, then $f(x)$ is irreducible in $\mathbb{Q}[x]$.
- Equivalently: If $f(x) \in \mathbb{Z}[x]$ has non-trivial factors in $\mathbb{Q}[x]$, then it has non-trivial factors in $\mathbb{Z}[x]$.
- Proof: Suppose $f(x)=g(x) h(x)$ with $f(x) \in \mathbb{Z}[x]$ and $g(x), h(x) \in$ $\mathbb{Q}[x]$. We must find factors of $f(x)$ in $\mathbb{Z}[x]$. Let $f(x)=a f_{0}(x)$, $g(x)=b g_{0}(x), h(x)=c h_{0}(x)$, where $f_{0}, g_{0}, h_{0} \in \mathbb{Z}[x]$ are primitive polynomials, and $a \in \mathbb{Z}, b, c \in \mathbb{Q}$.

Then $\frac{a}{b c} f_{0}(x)=g_{0}(x) h_{0}(x)$, which is a primitive polynomial by Gauss' Lemma above. Thus both $f_{0}(x)$ and $\frac{a}{b c} f_{0}(x)$ are primitive integer polynomials, so we must have $a / b c=1$ and $a=b c$. Thus $f(x)=b c g_{0}(x) h_{0}(x)=a g_{0}(x) h_{0}(x)$, with all factors in $\mathbb{Z}[x]$.
3. Unique factorization for $\mathbb{Z}[x]$

- $\mathbb{Z}[x]$ has no possible division algorithm because $\operatorname{gcd}(2, x)=1$, but $2 n(x)+x m(x) \neq 1$ for any $n(x), m(x) \in \mathbb{Z}[x]$.
- Proposition: Any integer polynomial factors into a product of irreducibles in $\mathbb{Z}[x]$, namely into prime constants and irreducible primititve polynomials, and this factorization is unique except for re-ordering and \pm signs.
- Proof: Suppose

$$
p_{1} \cdots p_{r} f_{1}(x) \cdots f_{u}(x)=q_{1} \cdots q_{s} g_{1}(x) \cdots g_{v}(x)
$$

where $p_{i}, q_{i} \in \mathbb{Z}$ are prime constants and $f_{i}(x), g_{i}(x) \in \mathbb{Z}[x]$ are primitive irreducibles. Thus $f_{i}(x), g_{i}(x)$ are also irreducibles in $\mathbb{Q}[x]$ by the above Gauss Lemma on Factorization. By the Unique Factorization for $\mathbb{Q}[x]$ we may assume $f_{i}(x)=c_{i} g_{i}(x)$ for constants $c_{i} \in \mathbb{Q}^{\times}$. But since both $f_{i}(x)$ and $g_{i}(x)$ are primitive integer polynomials, we must have $c_{i}= \pm 1$. Factoring $f_{i}(x)=g_{i}(x)$ from both sides, we have $p_{1} \cdots p_{r}=q_{1} \cdots q_{s}$. By Unique Factorization for \mathbb{Z}, we may assume $p_{i}= \pm q_{i}$, so we are done.

