Lecture: Wed 9/28/05

- 1. Why define abstract structures like a field or a Euclidean ring, rather than just prove things for \mathbb{Q} and \mathbb{Z} directly?
 - The field axioms are the crucial properties of \mathbb{Q} , which give a foundation from which to rigorously prove most of the formulas of algebra. Similarly, the crucial properties of \mathbb{Z} are captured in the definition of a Euclidean ring, giving us a foundation to prove non-obvious facts such as Unique Factorization.
 - Once we prove a formula using only the field axioms, we know it holds not only for $F = \mathbb{Q}$, but for *any* new field we may define, such as the clock arithmetic field \mathbb{Z}_p (*p* prime) or the rational functions $\mathbb{Q}(x)$. Similarly,since Unique Factorization depends only on the division algorithm, we know it holds not only for \mathbb{Z} but for $\mathbb{Q}[x]$ and any other Euclidean ring we find.
- 2. Basic formulas for any field F
 - We assume axioms (i)–(iv), (i')–(iv'), (v). In the proofs, we will use commutativity and associativity without comment.
 - Lemma: The elements 0, 1, -a, a^{-1} are unique. Proof: If we have two zero elements 0, 0' with a + 0 = a + 0' = afor all a, then: 0 = 0 + 0' = 0'. If we have two inverse elements -a, -a' with (-a) + a = (-a') + a = 0, then:

$$a = (-a) + 0$$

= (-a) + a + (-a')
= 0 + (-a') = -a'.

Similarly for 1 and a^{-1} .

- Lemma: $0 \cdot a = 0$ Proof: $0 = -(0 \cdot a) + 0 \cdot a$ $= -(0 \cdot a) + (0 + 0) \cdot a$ $= -(0 \cdot a) + 0 \cdot a + 0 \cdot a$ $= 0 \cdot a$.
- Lemma: -(-a) = aProof: -(-a) = -(-a) + 0 = -(-a) + (-a) + a= 0 + a = a.

• Lemma: $(-a) \cdot b = -(a \cdot b)$ Proof: By definition, $-(a \cdot b)$ is the unique element such that $-(a \cdot b) + a \cdot b = 0$. Now:

$$(-a) \cdot b + a \cdot b = ((-a) + a) \cdot b$$

= $0 \cdot b = 0$.

Lemma: (-a) • (-b) = a • b
Proof: Using the previous lemma twice:

$$\begin{array}{rcl} (-a) \bullet (-b) & = & -(a \bullet (-b)) \\ & = & -(-(a \bullet b)) = a \bullet b \end{array}$$

- 3. Advanced formulas for any field F
 - Prove the following as exercises.
 - Quadratic formula: The only roots of $ax^2 + bx + c \in F[x]$ are $x = (-b \pm d)/2a$, where $d \in F$ is an element with $d^2 = b^2 4ac$. If there is no such element $d \in F$, then the equation has no solution.
 - FOIL: (a + b)(c + d) = ac + ad + bc + bd. This holds in any commutative ring, not necessarily a field.
 - Binomial Theorem:

$$\begin{aligned} &(a+b)^2 &= a^2 + 2ab + b^2 \\ &(a+b)^3 &= a^3 + 3a^2b + 3ab^2 + b^3 \\ &(a+b)^4 &= a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4 \\ &(a+b)^n &= a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + b^n \,, \end{aligned}$$

where the binomial coefficients $\binom{n}{k}$ are defined recursively by:

$$\binom{n}{0} = \binom{n}{n} = 1$$
 and $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$.

Again, this holds in any commutative ring.

• *Example:* In $F = \mathbb{Z}_2$, we have 2 = 0, so $(a + b)^2 = a^2 + b^2$. This is not so remarkable, since \mathbb{Z}_2 has only two elements. But now consider $\mathbb{Z}_2[x]$, polynomials with coefficients in \mathbb{Z}_2 . For example:

 $f(x) = 0, 1, x, x+1, x^2, x^2+1, x^2+x, x^2+x+1, \dots$

Then we once again have:

$$(f(x) + g(x))^{2} = f(x)^{2} + g(x)^{2}$$

for any polynomials $f(x), g(x) \in \mathbb{Z}_2[x]$.

• $a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + \dots ab^{n-2} + b^{n-1}).$