Lecture: Wed 9/28/05

1. Why define abstract structures like a field or a Euclidean ring, rather than just prove things for \mathbb{Q} and \mathbb{Z} directly?

- The field axioms are the crucial properties of \mathbb{Q}, which give a foundation from which to rigorously prove most of the formulas of algebra. Similarly, the crucial properties of \mathbb{Z} are captured in the definition of a Euclidean ring, giving us a foundation to prove non-obvious facts such as Unique Factorization.
- Once we prove a formula using only the field axioms, we know it holds not only for $F=\mathbb{Q}$, but for any new field we may define, such as the clock arithmetic field \mathbb{Z}_{p} (p prime) or the rational functions $\mathbb{Q}(x)$. Similarly,since Unique Factorization depends only on the division algorithm, we know it holds not only for \mathbb{Z} but for $\mathbb{Q}[x]$ and any other Euclidean ring we find.

2. Basic formulas for any field F

- We assume axioms (i)-(iv), (i')-(iv'), (v) . In the proofs, we will use commutativity and associativity without comment.
- Lemma: The elements $0,1,-a, a^{-1}$ are unique.

Proof: If we have two zero elements $0,0^{\prime}$ with $a+0=a+0^{\prime}=a$ for all a, then: $0=0+0^{\prime}=0^{\prime}$. If we have two inverse elements $-a,-a^{\prime}$ with $(-a)+a=\left(-a^{\prime}\right)+a=0$, then:

$$
\begin{aligned}
-a & =(-a)+0 \\
& =(-a)+a+\left(-a^{\prime}\right) \\
& =0+\left(-a^{\prime}\right)=-a^{\prime} .
\end{aligned}
$$

Similarly for 1 and a^{-1}.

- Lemma: $0 \cdot a=0$

$$
\text { Proof: } \quad \begin{aligned}
0 & =-(0 \cdot a)+0 \cdot a \\
& =-(0 \cdot a)+(0+0) \cdot a \\
& =-(0 \cdot a)+0 \cdot a+0 \cdot a \\
& =0 \cdot a .
\end{aligned}
$$

- Lemma: $-(-a)=a$

Proof:

$$
\begin{aligned}
-(-a) & =-(-a)+0 \\
& =-(-a)+(-a)+a \\
& =0+a=a .
\end{aligned}
$$

- Lemma: $(-a) \cdot b=-(a \cdot b)$

Proof: By definition, $-(a \cdot b)$ is the unique element such that $-(a \cdot b)+a \cdot b=0$. Now:

$$
\begin{aligned}
(-a) \cdot b+a \cdot b & =((-a)+a) \cdot b \\
& =0 \cdot b=0 .
\end{aligned}
$$

-Lemma: $(-a) \cdot(-b)=a \cdot b$
Proof: Using the previous lemma twice:

$$
\begin{aligned}
(-a) \cdot(-b) & =-(a \cdot(-b)) \\
& =-(-(a \cdot b))=a \cdot b
\end{aligned}
$$

3. Advanced formulas for any field F

- Prove the following as exercises.
- Quadratic formula: The only roots of $a x^{2}+b x+c \in F[x]$ are $x=(-b \pm d) / 2 a$, where $d \in F$ is an element with $d^{2}=b^{2}-4 a c$. If there is no such element $d \in F$, then the equation has no solution.
- FOIL: $(a+b)(c+d)=a c+a d+b c+b d$.

This holds in any commutative ring, not necessarily a field.

- Binomial Theorem:

$$
\begin{aligned}
(a+b)^{2} & =a^{2}+2 a b+b^{2} \\
(a+b)^{3} & =a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
(a+b)^{4} & =a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4} \\
(a+b)^{n} & =a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\cdots+b^{n}
\end{aligned}
$$

where the binomial coefficients $\binom{n}{k}$ are defined recursively by:

$$
\binom{n}{0}=\binom{n}{n}=1 \quad \text { and } \quad\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1} .
$$

Again, this holds in any commutative ring.

- Example: In $F=\mathbb{Z}_{2}$, we have $2=0$, so $(a+b)^{2}=a^{2}+b^{2}$. This is not so remarkable, since \mathbb{Z}_{2} has only two elements. But now consider $\mathbb{Z}_{2}[x]$, polynomials with coefficients in \mathbb{Z}_{2}. For example:

$$
f(x)=0,1, x, x+1, x^{2}, x^{2}+1, x^{2}+x, x^{2}+x+1, \ldots
$$

Then we once again have:

$$
(f(x)+g(x))^{2}=f(x)^{2}+g(x)^{2}
$$

for any polynomials $f(x), g(x) \in \mathbb{Z}_{2}[x]$.

- $a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+\cdots a b^{n-2}+b^{n-1}\right)$.

