
Math 418H Fall 2005

Lecture: Wed 9/28/05

1. Why define abstract structures like a field or a Euclidean ring, rather
than just prove things for Q and Z directly?

• The field axioms are the crucial properties of Q , which give a
foundation from which to rigorously prove most of the formulas
of algebra. Similarly, the crucial properties of Z are captured in
the definition of a Euclidean ring, giving us a foundation to prove
non-obvious facts such as Unique Factorization.

• Once we prove a formula using only the field axioms, we know it
holds not only for F = Q , but for any new field we may define,
such as the clock arithmetic field Zp (p prime) or the rational
functions Q(x). Similarly,since Unique Factorization depends only
on the division algorithm, we know it holds not only for Z but for
Q[x] and any other Euclidean ring we find.

2. Basic formulas for any field F

• We assume axioms (i)–(iv), (i’)–(iv’), (v) . In the proofs, we will
use commutativity and associativity without comment.

• Lemma: The elements 0, 1, −a, a−1 are unique.
Proof: If we have two zero elements 0, 0′ with a + 0 = a + 0′ = a
for all a, then: 0 = 0 + 0′ = 0′. If we have two inverse elements
−a,−a′ with (−a) + a = (−a′) + a = 0, then:

−a = (−a) + 0
= (−a) + a + (−a′)
= 0 + (−a′) = −a′ .

Similarly for 1 and a−1.

• Lemma: 0 • a = 0
Proof: 0 = −(0 • a) + 0 • a

= −(0 • a) + (0+0) • a
= −(0 • a) + 0 • a + 0 • a
= 0 • a .

• Lemma: −(−a) = a
Proof: −(−a) = −(−a) + 0

= −(−a) + (−a) + a
= 0 + a = a .



• Lemma: (−a) • b = −(a • b)
Proof: By definition, −(a • b) is the unique element such that
−(a • b) + a • b = 0. Now:

(−a) • b + a • b = ((−a) + a) • b
= 0 • b = 0 .

• Lemma: (−a) •(−b) = a • b
Proof: Using the previous lemma twice:

(−a) •(−b) = −(a •(−b))
= −(−(a • b)) = a • b .

3. Advanced formulas for any field F

• Prove the following as exercises.

• Quadratic formula: The only roots of ax2 + bx + c ∈ F [x] are
x = (−b±d)/2a , where d ∈ F is an element with d2 = b2−4ac. If
there is no such element d ∈ F , then the equation has no solution.

• FOIL: (a + b)(c + d) = ac + ad + bc + bd .
This holds in any commutative ring, not necessarily a field.

• Binomial Theorem:

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

(a + b)n = an +
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)
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)
an−2b2 + · · · + bn ,

where the binomial coefficients
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)
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Again, this holds in any commutative ring.

• Example: In F = Z2 , we have 2 = 0, so (a + b)2 = a2 + b2. This
is not so remarkable, since Z2 has only two elements. But now
consider Z2[x], polynomials with coefficients in Z2. For example:

f(x) = 0 , 1 , x , x+1 , x2 , x2+1 , x2+x , x2+x+1 , . . .

Then we once again have:

(f(x) + g(x))2 = f(x)2 + g(x)2

for any polynomials f(x), g(x) ∈ Z2[x].

• an − bn = (a − b)(an−1 + an−2b + · · ·abn−2 + bn−1).


